y2
12
-
x2
4
=1的頂點(diǎn)為焦點(diǎn),長(zhǎng)半軸長(zhǎng)為4的橢圓方程為( �。�
A.
x2
64
+
y2
52
=1
B.
x2
16
+
y2
12
=1
C.
x2
16
+
y2
4
=1
D.
x2
4
+
y2
16
=1
∵雙曲線
y2
12
-
x2
4
=1
的焦點(diǎn)為(0,4),(0,-4)
頂點(diǎn)為(0,2
3
)(0,-2
3

∴以雙曲線的頂點(diǎn)為焦點(diǎn),長(zhǎng)半軸長(zhǎng)為4的橢圓a=4,c=2
3

∴b=2
∴橢圓的方程是
y2
16
+
x2
4
=1
,
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

y2
12
-
x2
4
=1
的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓方程為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊烽懗鑸电仚婵°倗濮寸换姗€鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾诲┑鐘叉搐缁狀垶鏌ㄩ悤鍌涘