已知f(x)的圖象如圖,則f(x)的解析式為
 

考點(diǎn):函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:當(dāng)0≤x≤1時(shí),函數(shù)的圖象是平行于x軸的線段,故f(x)=-1;
當(dāng)1<x≤2時(shí),函數(shù)的圖象是過(guò)點(diǎn)(1,-1)、(2,0)的線段,設(shè)f(x)=kx+b,用待定系數(shù)法解出k、b.
解答: 解:當(dāng)0≤x≤1時(shí),函數(shù)的圖象是平行于x軸的線段,故f(x)=-1;
當(dāng)1<x≤2時(shí),函數(shù)的圖象是過(guò)點(diǎn)(1,-1)、(2,0)的線段,
設(shè)f(x)=kx+b,∴
-1=k+b
0=2k+b
,解得k=1,b=-2,故f(x)=x-2;
f(x)=
-1  0≤x≤1
x-2   1<x≤2

故答案為:f(x)=
-1,0≤x≤1
x-2,1<x≤2
點(diǎn)評(píng):本題主要考查根據(jù)圖象求函數(shù)的解析式,如果知道函數(shù)的類別,待定系數(shù)法是常用的方法;此外,函數(shù)的表達(dá)式因自變量取值的不同而不同時(shí),應(yīng)分段表示.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過(guò)M(
2
,0),N(0,1)兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若P是該橢圓上的一個(gè)動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2是橢圓C的兩個(gè)焦點(diǎn),求
PF1
PF2
的最大值;
(3)過(guò)點(diǎn)D(0,2)且斜率為k的直線l與橢圓交于不同的兩點(diǎn)A、B,若點(diǎn)E(0,
11
4
),求證:對(duì)任意k2
3
2
,
AE
BE
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線P的頂點(diǎn)在原點(diǎn),焦點(diǎn)F在x軸的正半軸上,經(jīng)過(guò)點(diǎn)H(4,0)作直線與拋物線P相交于A,B兩點(diǎn),設(shè)A(x1,y1),B(x2,y2),且y1y2=-16.
(1)求拋物線P的方程;
(2)是否存在常數(shù)a,當(dāng)點(diǎn)M在拋物線P上運(yùn)動(dòng)時(shí),直線x=a都與以MF為直徑的圓相切?若存在,求出所有a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)P(2,0)作直線l與圓x2+y2=1交于A、B兩點(diǎn),則
PA
PB
等于定值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿足約束條件
x-y≤0
x≥1
y≤2
,若該不等式組表示的平面區(qū)域被直線x+y+m=0分成面積相等的兩部分,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=sin(2x+
π
3
)(x∈R)有下列命題:
①把函數(shù)f(x)的圖象沿水平方向右平移
π
12
個(gè)單位,可得到函數(shù)y=cos2x的圖象;
②函數(shù)f(x)的圖象關(guān)于點(diǎn)(
π
6
,0)對(duì)稱;
③把函數(shù)f(x)的圖象上每個(gè)點(diǎn)的橫坐標(biāo)縮小到原來(lái)的
1
2
,得到函數(shù)y=sin(x+
π
6
)的圖象;
④函數(shù)f(x)的圖象關(guān)于直線x=-
12
對(duì)稱.
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正三棱柱ABC-A′B′C′(側(cè)棱垂直底面,底面為正三角形)中,D是BC的中點(diǎn),AA′=AB=2
(1)求三棱錐A′-ABD的體積;
(2)求證:AD⊥B′D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ax+
b
x
(a,b∈R),下列命題:
①當(dāng)a>0,b>0時(shí),對(duì)函數(shù)f(x)圖象上任意一點(diǎn)A,圖象上存在唯一的點(diǎn)B,使得tan∠AOB=
1
a
(O是坐標(biāo)原點(diǎn));
②當(dāng)ab≠0時(shí),函數(shù)f(x)圖象上任意一點(diǎn)的切線與直線y=ax及y軸圍成的三角形面積是定值.
正確的是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-x+
a+3
x
在定義域內(nèi)無(wú)極值,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案