【題目】201818日,中共中央國務(wù)院隆重舉行國家科學(xué)技術(shù)獎勵大會,在科技界引發(fā)熱烈反響,自主創(chuàng)新正成為引領(lǐng)經(jīng)濟社會發(fā)展的強勁動力.某科研單位在研發(fā)新產(chǎn)品的過程中發(fā)現(xiàn)了一種新材料,由大數(shù)據(jù)測得該產(chǎn)品的性能指標(biāo)值y與這種新材料的含量x(單位:克)的關(guān)系為:當(dāng)時,yx的二次函數(shù);當(dāng)時,測得數(shù)據(jù)如下表(部分):

x(單位:克)

0

1

2

9

y

0

3

1)求y關(guān)于x的函數(shù)關(guān)系式;

2)當(dāng)該產(chǎn)品中的新材料含量x為何值時,產(chǎn)品的性能指標(biāo)值最大.

【答案】12

【解析】

1)利用待定系數(shù)法,結(jié)合所給數(shù)據(jù)可求函數(shù)關(guān)系式;

2)分段求解函數(shù)的最大值,比較可得結(jié)果.

1)當(dāng)時,由題意,設(shè)),

由表格數(shù)據(jù)得,解得,

所以,當(dāng)時,

當(dāng)時,,由表格數(shù)據(jù)可得,

解得,所以當(dāng)時,,

綜上,.

2)當(dāng)時,,

可知時,

當(dāng)時,單凋遞減,

可知時,.

綜上可得,當(dāng)時,產(chǎn)品的性能指標(biāo)值最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠今年前三個月生產(chǎn)某種產(chǎn)品的數(shù)量統(tǒng)計表如下:

為了估測以后每個月的產(chǎn)量,以這三個月的產(chǎn)量為依據(jù),用一個函數(shù)模擬產(chǎn)品的月產(chǎn)量與月份的關(guān)系,模擬函數(shù)可選擇二次函數(shù)為常數(shù)且),或函數(shù)為常數(shù)).已知4月份的產(chǎn)量為1.37萬件,請問用以上哪個函數(shù)作為模擬函數(shù)較好,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)exax1.

1)求f(x)的單調(diào)增區(qū)間;

2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,已知圓的圓心坐標(biāo)為,半徑為,以坐標(biāo)原點為極點, 軸正半軸為極軸,建立極坐標(biāo)系,直線的參數(shù)方程為: 為參數(shù))

(1)求圓和直線的極坐標(biāo)方程;

(2)點 的極坐標(biāo)為,直線與圓相較于,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是雙曲線 (a>0,b>0,xy≠0)上的動點,F(xiàn)1,F(xiàn)2是雙曲線的焦點,M是∠F1PF2的平分線上一點,且.某同學(xué)用以下方法研究|OM|:延長F2M交PF1于點N,可知△PNF2為等腰三角形,且M為F2N的中點,得|OM|=|NF1|=…=a。類似地:P是橢圓 (a>b>0,xy≠0)上的動點,F(xiàn)1,F(xiàn)2是橢圓的焦點,M是∠F1PF2的平分線上一點,且,則|OM|的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知射手甲射擊一次,命中9環(huán)(含9環(huán))以上的概率為0.56,命中8環(huán)的概率為0.22,命中7環(huán)的概率為0.12.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(1)求甲射擊一次,命中不足8環(huán)的概率;

(2)求甲射擊一次,至少命中7環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知菱形的邊長為2, . 是邊上一點,線段于點.

(1)若的面積為,求的長;

(2)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形和矩形所在平面互相垂直 ,

(1)求二面角的大;

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點,焦點在軸上,短軸長為,且兩個焦點和短軸的兩個端點恰為一個正方形的頂點,過右焦點軸不垂直的直線交橢圓于, 兩點.

Ⅰ)求橢圓的方程.

Ⅱ)當(dāng)直線的斜率為時,求的面積.

Ⅲ)在線段上是否存在點,使得經(jīng), 為領(lǐng)邊的平行四邊形是菱形?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案