【題目】如圖,已知正方形和矩形所在平面互相垂直 ,

(1)求二面角的大小;

(2)求點到平面的距離.

【答案】(1)60°.(2)

【解析】試題分析:(1)先根據(jù)條件建立空間直角坐標(biāo)系,設(shè)各點坐標(biāo),根據(jù)方程組求各面法向量,再根據(jù)向量數(shù)量積求夾角,最后根據(jù)二面角與向量夾角關(guān)系得結(jié)果(2)根據(jù)向量投影得點到平面的距離為再根據(jù)向量數(shù)量積求值

試題解析: 正方形和矩形所在平面互相垂直,

分別以AB,AD,AFx,y,z軸建立空間直角坐標(biāo)系,

A(0,0,0),B(,0,0), C(, ,0), D(0, ,0),

E(, ,1),F(xiàn)(0,0,1).

(1)設(shè)平面CDE的法向量為平面BDE的法向量,

解得.

,

二面角 B—DE—C等于60°.

(2)

.設(shè)點到平面BDF的距離為h,則

.所以點F到平面BDE的距離為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的方程為),點為坐標(biāo)原點,點 的坐標(biāo)分別為, ,點在線段上,滿足,直線的斜率為

(1)求橢圓的方程;

(2)若斜率為的直線交橢圓 兩點,交軸于點),問是否存在實數(shù)使得以為直徑的圓恒過點?若存在,求的值,若不存在,說出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C過點M0-2)、N(3,1),且圓心C在直線x+2y+1=0上.

(1)求圓C的方程;

(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)某水文觀測點的歷史統(tǒng)計數(shù)據(jù),得到某河流水位(單位:米)的頻率分布直方圖如下:將河流水位在以上6段的頻率作為相應(yīng)段的概率,并假設(shè)每年河流水位互不影響.

)求未來三年,至多有1年河流水位的概率(結(jié)果用分?jǐn)?shù)表示);

)該河流對沿河企業(yè)影響如下:當(dāng)時,不會造成影響;當(dāng)時,損失10000元;當(dāng)時,損失60000元,為減少損失,現(xiàn)有三種應(yīng)對方案:

方案一:防御35的最高水位,需要工程費用3800元;

方案二:防御不超過31的水位,需要工程費用2000元;

方案三:不采用措施:試比較哪種方案較好,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)exax1.

1)求f(x)的單調(diào)增區(qū)間;

2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體中,,,點分別為、的中點.

(1)證明:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,已知圓的圓心坐標(biāo)為,半徑為,以坐標(biāo)原點為極點, 軸正半軸為極軸,建立極坐標(biāo)系,直線的參數(shù)方程為: 為參數(shù))

(1)求圓和直線的極坐標(biāo)方程;

(2)點 的極坐標(biāo)為,直線與圓相較于,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知射手甲射擊一次,命中9環(huán)(含9環(huán))以上的概率為0.56,命中8環(huán)的概率為0.22,命中7環(huán)的概率為0.12.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(1)求甲射擊一次,命中不足8環(huán)的概率;

(2)求甲射擊一次,至少命中7環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

如圖,在四棱錐PABCD中,側(cè)面PAD底面ABCD,側(cè)棱PAPD=,底面ABCD為直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2OAD中點.

(Ⅰ)求證:PO平面ABCD;

(Ⅱ)求異面直線PBCD所成角的余弦值;

(Ⅲ)求點A到平面PCD的距離.

查看答案和解析>>

同步練習(xí)冊答案