已知函數(shù))是定義在上的奇函數(shù),且時(shí),函數(shù)取極值1.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)令,若),不等式恒成立,求實(shí)數(shù)的取值范圍;
(Ⅰ)(Ⅱ)

試題分析:(Ⅰ)函數(shù))是定義在R上的奇函數(shù),
恒成立,即對(duì)于恒成立,.           2分
,
時(shí),函數(shù)取極值1.∴,,
解得.∴.            4分
(Ⅱ)不等式恒成立,只需即可.        5分
∵函數(shù)上單調(diào)遞減,∴.         6分
,
,
故函數(shù),上單調(diào)遞增,在上單調(diào)遞減,
則當(dāng)時(shí),取得極小值,                     8分
上,當(dāng)時(shí),,
①當(dāng)時(shí),,
,
解得,故此時(shí).               10分
②當(dāng)時(shí),,

解得,故此時(shí).綜上所述,實(shí)數(shù)m的取值范圍是.        12分
點(diǎn)評(píng):第一問(wèn)中時(shí),函數(shù)取極值1中隱含了兩個(gè)關(guān)系式:;,第二問(wèn)不等式恒成立問(wèn)題求參數(shù)范圍的,常轉(zhuǎn)化為求函數(shù)最值問(wèn)題,本題中要注意的是的取值范圍是不同的,因此應(yīng)分別求兩函數(shù)最值
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),且
(1)求
(2)判斷的奇偶性;
(3)判斷上的單調(diào)性,并證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

,則有(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列函數(shù)中,與函數(shù)y定義域相同的函數(shù)為(     )
A.yB.yC.yxexD.y

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

將邊長(zhǎng)為米的一塊正方形鐵皮的四角各截去一個(gè)大小相同的小正方形,然后將四邊折起做成一個(gè)無(wú)蓋的方盒.欲使所得的方盒有最大容積,截去的小正方形的邊長(zhǎng)應(yīng)為多少米?方盒的最大容積為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)若在區(qū)間上是減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

對(duì)于函數(shù) 
(1)探索函數(shù)的單調(diào)性;
(2)是否存在實(shí)數(shù),使函數(shù)為奇函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù),則
A.為偶函數(shù),且在上單調(diào)遞減
B.為偶函數(shù),且在上單調(diào)遞增
C.為奇函數(shù),且在上單調(diào)遞增
D.為奇函數(shù),且在上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求函數(shù)在下列定義域內(nèi)的值域。
(1)函數(shù)y=f(x)的值域
(2)(其中)函數(shù)y=f(x)的值域。

查看答案和解析>>

同步練習(xí)冊(cè)答案