已知函數(shù),且
(1)求;
(2)判斷的奇偶性;
(3)判斷上的單調(diào)性,并證明。
(1); (2)為偶函數(shù);(3)單調(diào)遞減。

試題分析:(1).,      解得:
(2),定義域為
 ,所以為偶函數(shù)
(3)
,,則,則單調(diào)遞減
點評:中檔題,本題解答思路明確,通過布列方程組求得a,b的值。判斷函數(shù)的奇偶性,主要應用奇偶函數(shù)的定義。在某區(qū)間,導數(shù)值非負,函數(shù)為增函數(shù),導數(shù)值非正,函數(shù)為減函數(shù)。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某租賃公司擁有汽車100輛,當每輛車的月租金為3000元時,可全部租出,當每輛車的月租金每增加50元時,未租出的車將會增加一輛,租出的車每輛每月需維護費150元,未租出的車每輛每月需要維護費50元.
(1)當每輛車的月租金定為3600元時,能租出多少輛車?
(2)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,某動物園要建造兩間完全相同的矩形熊貓居室,其總面積為24平方米,設熊貓居室的一面墻AD的長為x米 .

(1)用x表示墻AB的長;
(2)假設所建熊貓居室的墻壁造價(在墻壁高度一定的前提下)為每米1000元,請將墻壁的總造價y(元)表示為x(米)的函數(shù);
(3)當x為何值時,墻壁的總造價最低?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)滿足,其中a>0,a≠1.
(1)對于函數(shù),當x∈(-1,1)時,f(1-m)+f(1-m2)<0,求實數(shù)m的取值集合;
(2)當x∈(-∞,2)時,的值為負數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知定義在實數(shù)集R上的函數(shù)滿足,且的導數(shù)在R上恒有,則不等式的解集為 _______________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)定義域為,定義域為,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設奇函數(shù)上是增函數(shù),且,若函數(shù)對所有的都成立,則當時t的取值范圍是                  (   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,若,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù))是定義在上的奇函數(shù),且時,函數(shù)取極值1.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)令,若),不等式恒成立,求實數(shù)的取值范圍;

查看答案和解析>>

同步練習冊答案