【題目】求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.
(1)焦點(diǎn)在x軸上,實(shí)軸長10,虛軸長8.
(2)焦點(diǎn)在y軸上,焦距是10,虛軸長8.
(3)離心率,經(jīng)過點(diǎn).
【答案】(1);(2);(3).
【解析】
(1)根據(jù)題意,得到的值,結(jié)合雙曲線焦點(diǎn)所在軸,求得雙曲線的標(biāo)準(zhǔn)方程;
(2)根據(jù)題意,得到的值,利用雙曲線中的關(guān)系,求得的值,根據(jù)雙曲線焦點(diǎn)所在軸,求得雙曲線的標(biāo)準(zhǔn)方程;
(3)根據(jù)題意,得到雙曲線為等軸雙曲線,設(shè)出方程,利用點(diǎn)在曲線上,點(diǎn)的坐標(biāo)滿足曲線的方程,求得結(jié)果.
(1)根據(jù)題意,所求雙曲線的實(shí)軸長10,虛軸長8,
可得,則有,
又因?yàn)殡p曲線的焦點(diǎn)在x軸上,
所以雙曲線的標(biāo)準(zhǔn)方程為:;
(2)根據(jù)題意,雙曲線的焦距是10,虛軸長為8,
可得,則,所以,
又因?yàn)殡p曲線的焦點(diǎn)在y軸上,
所以雙曲線的標(biāo)準(zhǔn)方程為:;
(3)根據(jù)題意,雙曲線的離心率,即,則有,
所以,
所以該雙曲線為等軸雙曲線,設(shè)其方程為,
又因?yàn)殡p曲線經(jīng)過點(diǎn),則有,則,
所以雙曲線的標(biāo)準(zhǔn)方程為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某企業(yè)中隨機(jī)抽取了5名員工測試他們的藝術(shù)愛好指數(shù)和創(chuàng)新靈感指數(shù),統(tǒng)計(jì)結(jié)果如下表(注:指數(shù)值越高素質(zhì)越優(yōu)秀):
(1)求創(chuàng)新靈感指數(shù)關(guān)于藝術(shù)愛好指數(shù)的線性回歸方程;
(2)企業(yè)為提高員工的藝術(shù)愛好指數(shù),要求員工選擇音樂和繪畫中的一種進(jìn)行培訓(xùn),培訓(xùn)音樂次數(shù)對藝術(shù)愛好指數(shù)的提高量為,培訓(xùn)繪畫次數(shù)對藝術(shù)愛好指數(shù)的提高量為,其中為參加培訓(xùn)的某員工已達(dá)到的藝術(shù)愛好指數(shù).藝術(shù)愛好指數(shù)已達(dá)到3的員工甲選擇參加音樂培訓(xùn),藝術(shù)愛好指數(shù)已達(dá)到4的員工乙選擇參加繪畫培訓(xùn),在他們都培訓(xùn)了20次后,估計(jì)誰的創(chuàng)新靈感指數(shù)更高?
參考公式:回歸方程中,,.
參考數(shù)據(jù):,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。
(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:
(2)若成等比數(shù)列,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P-ABCD中,底面ABCD是邊長為的正方形,平面PAC⊥底面ABCD,PA=PC=
(1)求證:PB=PD;
(2)若點(diǎn)M,N分別是棱PA,PC的中點(diǎn),平面DMN與棱PB的交點(diǎn)Q,則在線段BC上是否存在一點(diǎn)H,使得DQ⊥PH,若存在,求BH的長,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有,,…,這5個(gè)球隊(duì)進(jìn)行單循環(huán)比賽(全部比賽過程中任何一隊(duì)都要分別與其他各隊(duì)比賽一場且只比賽一場).當(dāng)比賽進(jìn)行到一定階段時(shí),統(tǒng)計(jì),,,這4個(gè)球隊(duì)已經(jīng)賽過的場數(shù)分別為:隊(duì)4場,隊(duì)3場, 隊(duì)2場,隊(duì)1場,則隊(duì)比賽過的場數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年高考總成績由語數(shù)外三門統(tǒng)考科目和物理、化學(xué)等六門選考科目組成,將每門選考科目的考生原始成績從高到低劃分為、、、共8個(gè)等級(jí),參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%,選考科目成績計(jì)入考生總成績時(shí),將A至E等級(jí)內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到、、、、、、,八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績.某市高一學(xué)生共6000人,為給高一學(xué)生合理選科提供依據(jù),對六門選考科目進(jìn)行測試,其中化學(xué)考試原始成績大致服從正態(tài)分布.
(1)求該市化學(xué)原始成績在區(qū)間的人數(shù);
(2)以各等級(jí)人數(shù)所占比例作為各分?jǐn)?shù)區(qū)間發(fā)生的概率,按高考改革方案,若從全省考生中隨機(jī)抽取3人,記X表示這3人中等級(jí)成績在區(qū)間的人數(shù),求.
(附:若隨機(jī)變量,則,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自古以來“民以食為天”,餐飲業(yè)作為我國第三產(chǎn)業(yè)中的一個(gè)支柱產(chǎn)業(yè),一直在社會(huì)發(fā)展與人民生活中發(fā)揮著重要作用.某機(jī)構(gòu)統(tǒng)計(jì)了2010~2016年餐飲收入的情況,得到下面的條形圖,則下面結(jié)論中不正確的是( )
A. 2010~2016年全國餐飲收入逐年增加
B. 2016年全國餐飲收入比2010年翻了一番以上
C. 2010~2016年全國餐飲收入同比增量最多的是2015年
D. 2010~2016年全國餐飲收入同比增量超過3000億元的年份有3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】五一勞動(dòng)節(jié)放假,某商場進(jìn)行一次大型抽獎(jiǎng)活動(dòng).在一個(gè)抽獎(jiǎng)盒中放有紅、橙、黃、綠、藍(lán)、紫的小球各2個(gè),分別對應(yīng)1分、2分、3分、4分、5分、6分.從袋中任取3個(gè)小球,按3個(gè)小球中最大得分的8倍計(jì)分,計(jì)分在20分到35分之間即為中獎(jiǎng).每個(gè)小球被取出的可能性都相等,用表示取出的3個(gè)小球中最大得分,求:
(1)取出的3個(gè)小球顏色互不相同的概率;
(2)隨機(jī)變量的概率分布和數(shù)學(xué)期望;
(3)求某人抽獎(jiǎng)一次,中獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為不同的兩點(diǎn),直線,下列命題正確的有( ).
①不論為何值,點(diǎn)都不在直線上;
②若,則過點(diǎn)的直線與直線平行;
③若,則直線經(jīng)過的中點(diǎn);
④若,則點(diǎn)在直線的同側(cè)且直線與線段的延長線相交.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com