【題目】五一勞動節(jié)放假,某商場進(jìn)行一次大型抽獎活動.在一個抽獎盒中放有紅、橙、黃、綠、藍(lán)、紫的小球各2個,分別對應(yīng)1分、2分、3分、4分、5分、6分.從袋中任取3個小球,按3個小球中最大得分的8倍計分,計分在20分到35分之間即為中獎.每個小球被取出的可能性都相等,用表示取出的3個小球中最大得分,求:

(1)取出的3個小球顏色互不相同的概率;

(2)隨機(jī)變量的概率分布和數(shù)學(xué)期望;

(3)求某人抽獎一次,中獎的概率.

【答案】(1)(2)分布列見解析,數(shù)學(xué)期望為(3)

【解析】

1)設(shè)事件表示“取出的3個小球上的顏色互不相同”,利用古典概型、排列組合能求出取出的3個小球顏色互不相同的概率;(2)由題意得有可能的取值為:2,34,5,6,分別求出相應(yīng)的概率,由此能求出隨機(jī)變量的概率分布列和數(shù)學(xué)期望;(3)設(shè)事件C表示“某人抽獎一次,中獎”,則,由此能求出結(jié)果.

(1) “一次取出的3個小球上的顏色互不相同”的事件記為,

(2)由題意有可能的取值為:2,3,4,5,6

;

;

;

;

所以隨機(jī)變量的概率分布為

2

3

4

5

6

因此的數(shù)學(xué)期望為

(3)“某人抽獎一次,中獎”的事件為,則

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】101日,某品牌的兩款最新手機(jī)(記為型號,型號)同時投放市場,手機(jī)廠商為了解這兩款手機(jī)的銷售情況,在101日當(dāng)天,隨機(jī)調(diào)查了5個手機(jī)店中這兩款手機(jī)的銷量(單位:部),得到下表:

手機(jī)店

型號手機(jī)銷量

6

6

13

8

11

型號手機(jī)銷量

12

9

13

6

4

(Ⅰ)若在101日當(dāng)天,從這兩個手機(jī)店售出的新款手機(jī)中各隨機(jī)抽取1部,求抽取的2部手機(jī)中至少有一部為型號手機(jī)的概率;

(Ⅱ)現(xiàn)從這5個手機(jī)店中任選3個舉行促銷活動,用表示其中型號手機(jī)銷量超過型號手機(jī)銷量的手機(jī)店的個數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(III)經(jīng)測算,型號手機(jī)的銷售成本(百元)與銷量(部)滿足關(guān)系.若表中型號手機(jī)銷量的方差,試給出表中5個手機(jī)店的型號手機(jī)銷售成本的方差的值.(用表示,結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.

1)焦點(diǎn)在x軸上,實(shí)軸長10,虛軸長8.

2)焦點(diǎn)在y軸上,焦距是10,虛軸長8.

3)離心率,經(jīng)過點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲、乙兩名工人在同樣條件下每天各生產(chǎn)100件產(chǎn)品,且每生產(chǎn)1件正品可獲利20元,生產(chǎn)1件次品損失30元,甲,乙兩名工人100天中出現(xiàn)次品件數(shù)的情況如表所示.

甲每天生產(chǎn)的次品數(shù)/件

0

1

2

3

4

對應(yīng)的天數(shù)/天

40

20

20

10

10

乙每天生產(chǎn)的次品數(shù)/件

0

1

2

3

對應(yīng)的天數(shù)/天

30

25

25

20

(1)將甲每天生產(chǎn)的次品數(shù)記為(單位:件),日利潤記為(單位:元),寫出的函數(shù)關(guān)系式;

(2)如果將統(tǒng)計的100天中產(chǎn)生次品量的頻率作為概率,記表示甲、乙兩名工人1天中各自日利潤不少于1950元的人數(shù)之和,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)求函數(shù)的極值;

(2)當(dāng)時,若直線 與曲線沒有公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)個不同的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地種植常規(guī)稻A和雜交稻B,常規(guī)稻A的畝產(chǎn)穩(wěn)定為500公斤,今年單價為3.50元/公斤,估計明年單價不變的可能性為10%,變?yōu)?.60元/公斤的可能性為60%,變?yōu)?.70元/公斤的可能性為30%.統(tǒng)計雜交稻B的畝產(chǎn)數(shù)據(jù),得到畝產(chǎn)的頻率分布直方圖如下;統(tǒng)計近10年來雜交稻B的單價(單位:元/公斤)與種植畝數(shù)(單位:萬畝)的關(guān)系,得到的10組數(shù)據(jù)記為,并得到散點(diǎn)圖如下,參考數(shù)據(jù)見下.

(1)估計明年常規(guī)稻A的單價平均值;

(2)在頻率分布直方圖中,各組的取值按中間值來計算,求雜交稻B的畝產(chǎn)平均值;以頻率作為概率,預(yù)計將來三年中至少有二年,雜交稻B的畝產(chǎn)超過765公斤的概率;

(3)判斷雜交稻B的單價y(單位:元/公斤)與種植畝數(shù)x(單位:萬畝)是否線性相關(guān)?若相關(guān),試根據(jù)以下的參考數(shù)據(jù)求出y關(guān)于x的線性回歸方程;調(diào)查得知明年此地雜交稻B的種植畝數(shù)預(yù)計為2萬畝.若在常規(guī)稻A和雜交稻B中選擇,明年種植哪種水稻收入更高?

統(tǒng)計參考數(shù)據(jù):,,,

附:線性回歸方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某超市為顧客提供四種結(jié)賬方式:現(xiàn)金、支付寶、微信、銀聯(lián)卡.若顧客甲沒有銀聯(lián)卡,顧客乙只帶了現(xiàn)金,顧客丙、丁用哪種方式結(jié)賬都可以,這四名顧客購物后,恰好用了其中的三種結(jié)賬方式,那么他們結(jié)賬方式的可能情況有( )種

A. 19B. 7C. 26D. 12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知與曲線相切的直線,與軸, 軸交于兩點(diǎn), 為原點(diǎn), ,( .

1)求證: 相切的條件是: .

2)求線段中點(diǎn)的軌跡方程;

3)求三角形面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案