如圖,設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,過準(zhǔn)線上一點(diǎn)且斜率為的直線交拋物線,兩點(diǎn),線段的中點(diǎn)為,直線交拋物線,兩點(diǎn).
(1)求拋物線的方程及的取值范圍;
(2)是否存在值,使點(diǎn)是線段的中點(diǎn)?若存在,求出值,若不存在,請說明理由.

(1),;(2)不存在.參考解析

解析試題分析:(1)由準(zhǔn)線上一點(diǎn),所以可以求得的值,即可取得拋物線的方程.由于直線與拋物線有兩個(gè)交點(diǎn),所以聯(lián)立方程消去y,需要判別式大于零即可得到k的取值范圍,又由于k等于零時(shí)沒有兩個(gè)交點(diǎn),所以應(yīng)排除,即可得到結(jié)論.
(2)是否存在值,使點(diǎn)是線段的中點(diǎn).由直線AB的方程聯(lián)立拋物線的方程,即可求得AB中點(diǎn)P的坐標(biāo).從而寫出PF的方程再聯(lián)立拋物線的方程,對比DE的中點(diǎn)是否與AB的中點(diǎn)相同.即可得到答案.
(1)由已知得,∴.∴拋物線方程為.  2分
設(shè)的方程為,,,
.                         4分
,解得,注意到不符合題意,
所以.                                   5分
(2)不存在值,使點(diǎn)是線段的中點(diǎn).理由如下:       6分
有(1)得,所以,所以,,直線的方程為.            8分
.  10分
當(dāng)點(diǎn)為線段的中點(diǎn)時(shí),有,即,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6f/9/8heap3.png" style="vertical-align:middle;" />,所以此方程無實(shí)數(shù)根.因此不存在值,使點(diǎn)是線段的中點(diǎn).      12分
考點(diǎn):1.拋物線的性質(zhì).2.聯(lián)立方程解方程組的思想.3.存在性的問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:( )的離心率為,點(diǎn)(1,)在橢圓C上.
(1)求橢圓C的方程;
(2)若橢圓C的兩條切線交于點(diǎn)M(4,),其中,切點(diǎn)分別是A、B,試?yán)媒Y(jié)論:在橢圓上的點(diǎn)()處的橢圓切線方程是,證明直線AB恒過橢圓的右焦點(diǎn);
(3)試探究的值是否恒為常數(shù),若是,求出此常數(shù);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓的離心率,.

(1)求橢圓C的方程;
(2)如圖,是橢圓C的頂點(diǎn),P是橢圓C上除頂點(diǎn)外的任意一點(diǎn),直線DP交軸于點(diǎn)N,直線AD交BP于點(diǎn)M。設(shè)BP的斜率為,MN的斜率為.證明:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為橢圓的左右焦點(diǎn),點(diǎn)為其上一點(diǎn),且有
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過的直線與橢圓交于兩點(diǎn),過平行的直線與橢圓交于、兩點(diǎn),求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知圓E ,點(diǎn),P是圓E上任意一點(diǎn).線段PF的垂直平分線和半徑PE相交于Q.
(1)求動(dòng)點(diǎn)Q的軌跡的方程;
(2)點(diǎn),點(diǎn)G是軌跡上的一個(gè)動(dòng)點(diǎn),直線AG與直線相交于點(diǎn)D,試判斷以線段BD為直徑的圓與直線GF的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知,,分別是橢圓的四個(gè)頂點(diǎn),△是一個(gè)邊長為2的等邊三角形,其外接圓為圓
(1)求橢圓及圓的方程;
(2)若點(diǎn)是圓劣弧上一動(dòng)點(diǎn)(點(diǎn)異于端點(diǎn),),直線分別交線段,橢圓于點(diǎn),,直線交于點(diǎn)
(。┣的最大值;
(ⅱ)試問:,兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓,過點(diǎn)且離心率為.
求橢圓的方程;
已知是橢圓的左右頂點(diǎn),動(dòng)點(diǎn)滿足,連接角橢圓于點(diǎn),在軸上是否存在異于點(diǎn)的定點(diǎn),使得以為直徑的圓經(jīng)過直線和直線的交點(diǎn),若存在,求出點(diǎn),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線的方程為,過原點(diǎn)作斜率為的直線和曲線相交,另一個(gè)交點(diǎn)記為,過作斜率為的直線與曲線相交,另一個(gè)交點(diǎn)記為,過作斜率為的直線與曲線相交,另一個(gè)交點(diǎn)記為,如此下去,一般地,過點(diǎn)作斜率為的直線與曲線相交,另一個(gè)交點(diǎn)記為,設(shè)點(diǎn)).
(1)指出,并求的關(guān)系式();
(2)求)的通項(xiàng)公式,并指出點(diǎn)列,,向哪一點(diǎn)無限接近?說明理由;
(3)令,數(shù)列的前項(xiàng)和為,試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓過點(diǎn),且它的離心率.
 
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)與圓相切的直線交橢圓于兩點(diǎn),若橢圓上一點(diǎn)滿足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案