已知關于x的不等式|x+1|-|x+2|>m有解,則實數(shù)m的取值范圍是( 。
A、(-∞,-1]
B、(-∞,-1)
C、(-∞,1]
D、(-∞,1)
考點:絕對值不等式的解法
專題:不等式的解法及應用
分析:由條件根據(jù)絕對值的意義,|x+1|-|x+2|的最大值為1,由此可得實數(shù)m的取值范圍.
解答: 解:由于|x+1|-|x+2|表示數(shù)軸上的x對應點到-1對應點的距離減去它到-2對應點的距離,
故|x+1|-|x+2|的最大值為1,
由題意可得,1>m,即 m<1,
故選:D.
點評:本題主要考查絕對值的意義,絕對值不等式的解法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中a3+a9+a15=9,則數(shù)列{an}的前17項和S17=( 。
A、102B、36C、48D、51

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC的內角A、B、C的對邊分別為a、b、c,若c=
3
,b=3,B=120°,則a等于( 。
A、
6
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下說法錯誤的是( 。
A、命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
B、函數(shù)f(x)=x-sinx(x∈R)有三個零點
C、若p∧q為真命題,則p,q均為真命題
D、若命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,x2+x+1≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2
sin(
1
2
x),為了得到函數(shù)g(x)=sin(
1
2
x)+cos(
1
2
x)的圖象,只要將y=f(x)的圖象(  )
A、向右平移
π
4
個單位長度
B、向左平移
π
4
個單位長度
C、向右平移
π
2
個單位長度
D、向左平移
π
2
個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}中,a3+a8=22,a6=7,則a5=(  )
A、13B、14C、15D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

銳角三角形ABC中,若A=2B,則下列敘述正確的是(  )
①sin3B=sin2C;  
②tan
3B
2
tan
C
2
=1; 
π
6
<B<
π
4
; 
a
b
∈(
2
,
3
].
A、①②B、②③C、③④D、④①

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=f(x)是定義在R上奇函數(shù),且滿足f(x-2)=-f(x)對一切x∈R都成立,又當x∈[-1,1]時f(x)=x3,則下列四個命題:
①函數(shù)y=f(x)是以4為周期的周期函數(shù)
②當x∈[1,3]時f(x)=(2-x)3
③函數(shù)y=f(x)圖象的對稱軸中有x=1
④當x∈[3,5]時f(x)=(x-2)3,
其中正確的命題個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,△ABCD中,E,F(xiàn)分別是BC,DC的中點,G為交點,若
AB
=
a
AD
=
b
,試以
a
b
為基底表示
DE
、
BF
、
CG

查看答案和解析>>

同步練習冊答案