在極坐標(biāo)系中,O為極點(diǎn),半徑為2的圓C的圓心的極坐標(biāo)為.
(1)求圓C的極坐標(biāo)方程;
(2)在以極點(diǎn)O為原點(diǎn),以極軸為x軸正半軸建立的直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)),直線與圓C相交于A,B兩點(diǎn),已知定點(diǎn),求|MA|·|MB|.
(1) (2)
解析試題分析:
(1)把圓心極坐標(biāo)轉(zhuǎn)化為直角坐標(biāo),在直角坐標(biāo)系里求出圓的方程,再利用極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化公式,把圓的直角坐標(biāo)方程轉(zhuǎn)化為極坐標(biāo)方程,化簡即可得到最終結(jié)果.
(2)把直線l的參數(shù)方程轉(zhuǎn)化為普通方程后,利用聯(lián)立方程式與韋達(dá)定理相結(jié)合,采用舍而不求的方式求出|MA|·|MB|的值.
試題解析:(1)由題得,圓心的直角坐標(biāo)為,所以圓的直角坐標(biāo)方程為,再利用極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化公式可得,化簡可得,故圓的極坐標(biāo)方程為.
(2)由題得直線的普通方程為,設(shè)A(),B(),聯(lián)立圓與直線方程得.又|MA|·|MB|
考點(diǎn): 極坐標(biāo) 參數(shù)方程 圓的方程
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線:為參數(shù)), 曲線 (為參數(shù)).
(1)設(shè)與相交于兩點(diǎn),求;
(2)若把曲線上各點(diǎn)的橫坐標(biāo)壓縮為原來的倍,縱坐標(biāo)壓縮為原來的倍,得到曲線,設(shè)點(diǎn)是曲線上的一個動點(diǎn),求它到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C的極坐標(biāo)方程為,直線的參數(shù)方程為(t為參數(shù),).
(1)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線C的形狀;
(2)若直線經(jīng)過點(diǎn),求直線被曲線C截得的線段AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中,O為極點(diǎn),半徑為2的圓C的圓心的極坐標(biāo)為.
(1)求圓C的極坐標(biāo)方程;
(2)P是圓C上一動點(diǎn),點(diǎn)Q滿足3,以極點(diǎn)O為原點(diǎn),以極軸為x軸正半軸建立直角坐標(biāo)系,求點(diǎn)Q的軌跡的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓,直線,以O(shè)為極點(diǎn),x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系.
(1)將圓C和直線方程化為極坐標(biāo)方程;
(2)P是上的點(diǎn),射線OP交圓C于點(diǎn)R,又點(diǎn)Q在OP上且滿足,當(dāng)點(diǎn)P在上移動時,求點(diǎn)Q軌跡的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)),為直線與曲線的公共點(diǎn). 以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求點(diǎn)的極坐標(biāo);
(Ⅱ)將曲線上所有點(diǎn)的縱坐標(biāo)伸長為原來的倍(橫坐標(biāo)不變)后得到曲線,過點(diǎn)作直線,若直線被曲線截得的線段長為,求直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且點(diǎn)在直線上.
(1)求的值及直線的直角坐標(biāo)方程;
(2)圓c的參數(shù)方程為,(為參數(shù)),試判斷直線與圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圓C1,直線C2的極坐標(biāo)方程分別為ρ=4sin θ,ρcos=2.
(1)求C1與C2交點(diǎn)的極坐標(biāo);
(2)設(shè)P為C1的圓心,Q為C1與C2交點(diǎn)連線的中點(diǎn).已知直線PQ的參數(shù)方程為(t∈R為參數(shù)),求a,b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com