已知曲線C的極坐標方程為,直線的參數(shù)方程為(t為參數(shù),).
(1)把曲線C的極坐標方程化為直角坐標方程,并說明曲線C的形狀;
(2)若直線經(jīng)過點,求直線被曲線C截得的線段AB的長.

(1),曲線C是頂點為O(0,0),焦點為F(1,0)的拋物線;(2)8.

解析試題分析:本題主要考查極坐標方程與直角坐標方程的互化,直線的參數(shù)方程,韋達定理等基礎(chǔ)知識,考查學(xué)生的轉(zhuǎn)化能力和計算能力.第一問,利用極坐標與直角坐標的互化公式,進行互化,并寫出圖形形狀;第二問,由直線的參數(shù)方程得出直線過,若還過,則,則直線的方程可進行轉(zhuǎn)化,由于直線與曲線C相交,所以兩方程聯(lián)立,得到關(guān)于t的方程,設(shè)出A,B點對應(yīng)的參數(shù),所以,利用兩根之和,兩根之積進行轉(zhuǎn)化求解.
試題解析:(1)曲線C的直角坐標方程為,故曲線C是頂點為O(0,0),焦點為F(1,0)的拋物線;                     .5分
(2)直線的參數(shù)方程為( t為參數(shù),0≤).故l經(jīng)過點(0,1);若直線經(jīng)過點(1,0),則
直線的參數(shù)方程為(t為參數(shù))
代入,得
設(shè)A、B對應(yīng)的參數(shù)分別為,則
="8"                   .10分
考點:1.極坐標與直角坐標的互化;2.直線的參數(shù)方程;3.直線與曲線的位置關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)過原點的直線與圓的一個交點為,點為線段的中點。
(1)求圓的極坐標方程;
(2)求點軌跡的極坐標方程,并說明它是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓O1和圓O2的極坐標方程分別為ρ=2,ρ2-2ρcos(θ-)=2.
(1)把圓O1和圓O2的極坐標方程化為直角坐標方程.
(2)求經(jīng)過兩圓交點的直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標系中,O為極點,半徑為2的圓C的圓心的極坐標為
(1)求圓C的極坐標方程;
(2)在以極點O為原點,以極軸為x軸正半軸建立的直角坐標系中,直線的參數(shù)方程為(t為參數(shù)),直線與圓C相交于A,B兩點,已知定點,求|MA|·|MB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線是過點,方向向量為的直線,圓方程
(1)求直線的參數(shù)方程
(2)設(shè)直線與圓相交于兩點,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標系內(nèi),已知曲線的方程為,以極點為原點,極軸方向為正半軸方向,利用相同單位長度建立平面直角坐標系,曲線的參數(shù)方程為為參數(shù)).
(1) 求曲線的直角坐標方程以及曲線的普通方程;
(2) 設(shè)點為曲線上的動點,過點作曲線的兩條切線,求這兩條切線所成角余弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標系.若極坐標方程為ρcosθ=4的直線與曲線(t為參數(shù))相交于A、B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系.圓C1,直線C2的極坐標方程分別為ρ=4sin θρcos =2.
(1)求C1C2交點的極坐標;
(2)設(shè)PC1的圓心,QC1C2交點連線的中點.已知直線PQ的參數(shù)方程為 (t∈R為參數(shù)),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系.圓C1,直線C2的極坐標方程分別為ρ=4sin θ,ρcos =2.
(1)求C1C2交點的極坐標;
(2)設(shè)PC1的圓心,QC1C2交點連線的中點.已知直線PQ的參數(shù)方程為 (t∈R為參數(shù)),求a,b的值.

查看答案和解析>>

同步練習(xí)冊答案