【題目】已知拋物線:的焦點(diǎn)為,點(diǎn)在上且其橫坐標(biāo)為1,以為圓心、為半徑的圓與的準(zhǔn)線相切.
(1)求的值;
(2)過點(diǎn)的直線與交于,兩點(diǎn),以、為鄰邊作平行四邊形,若點(diǎn)關(guān)于的對稱點(diǎn)在上,求的方程.
【答案】(1) (2)
【解析】
(1)本題可以根據(jù)“點(diǎn)到準(zhǔn)線的距離”等于“點(diǎn)到焦點(diǎn)的距離”得出的長,再根據(jù)“圓心到準(zhǔn)線的距離”以及“點(diǎn)到焦點(diǎn)的距離”都是圓的半徑即可列出算式并得出結(jié)果;
(2)首先可以根據(jù)題意畫出圖形,然后設(shè)出直線的方程以及直線的方程,再然后通過聯(lián)立方程組求出點(diǎn)的縱坐標(biāo)以及點(diǎn)的縱坐標(biāo)之和,最后通過計(jì)算出點(diǎn)的縱坐標(biāo)并與點(diǎn)的縱坐標(biāo)進(jìn)行比較即可計(jì)算出的值并得出結(jié)果。
(1)圓心到準(zhǔn)線的距離為,因?yàn)辄c(diǎn)的橫坐標(biāo)為1,所以,
依題意,有,所以。
(2)如圖所示,設(shè)點(diǎn)關(guān)于的對稱點(diǎn)為,與的交點(diǎn)為,線段與直線的交點(diǎn)為,設(shè)直線的方程為,
將點(diǎn)的橫坐標(biāo)為帶入拋物線方程中可得,
因?yàn)?/span>、分別為和的中點(diǎn),所以,直線的方程為,
聯(lián)立方程組,得,
因?yàn)?/span>是該方程的一個根,所以它的另一個根為,即點(diǎn)的縱坐標(biāo)為.
聯(lián)立方程組,得,
設(shè),,則,
設(shè),因?yàn)?/span>是平行四邊形,所以,
即,
所以,即.
所以點(diǎn)與點(diǎn)的縱坐標(biāo)相等,軸,
因?yàn)?/span>,所以,的方程為。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①離心率,②橢圓過點(diǎn),③面積的最大值為,這三個條件中任選一個,補(bǔ)充在下面(橫線處)問題中,解決下面兩個問題.
設(shè)橢圓的左、右焦點(diǎn)分別為,過且斜率為的直線交橢圓于兩點(diǎn),已知橢圓的短軸長為,________.
(1)求橢圓的方程;
(2)若線段的中垂線與軸交于點(diǎn),求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)一動點(diǎn)()到點(diǎn)的距離與點(diǎn)到軸的距離的差等于1,
(1)求動點(diǎn)的軌跡的方程;
(2)過點(diǎn)的直線與軌跡相交于不同于坐標(biāo)原點(diǎn)的兩點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某不透明紙箱中共有4個小球,其中1個白球,3個紅球,它們除顏色外均相同.
(Ⅰ)一次從紙箱中摸出兩個小球,求恰好摸出2個紅球的概率;
(Ⅱ)每次從紙箱中摸出一個小球,記錄顏色后放回紙箱,這樣摸取4次,記得到紅球的次數(shù)為,求的分布列;
(Ⅲ)每次從紙箱中摸出一個小球,記錄顏色后放回紙箱,這樣摸取100次,得到幾次紅球的概率最大?只需寫出結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知表1和表2是某年部分日期的天安門廣場升旗時(shí)刻表.
表1:某年部分日期的天安門廣場升旗時(shí)刻表
日期 | 升旗時(shí)刻 | 日期 | 升旗時(shí)刻 | 日期 | 升旗時(shí)刻 | 日期 | 升旗時(shí)刻 |
1月1日 | 7:36 | 4月9日 | 5:46 | 7月9日 | 4:53 | 10月8日 | 6:17 |
1月21日 | 7:31 | 4月28日 | 5:19 | 7月27日 | 5:07 | 10月26日 | 6:36 |
2月10日 | 7:14 | 5月16日 | 4:59 | 8月14日 | 5:24 | 11月13日 | 6:56 |
3月2日 | 6:47 | 6月3日 | 4:47 | 9月2日 | 5:42 | 12月1日 | 7:16 |
3月22日 | 6:15 | 6月22日 | 4:46 | 9月20日 | 5:59 | 12月20日 | 7:31 |
表2:某年2月部分日期的天安門廣場升旗時(shí)刻表
日期 | 升旗時(shí)刻 | 日期 | 升旗時(shí)刻 | 日期 | 升旗時(shí)刻 |
2月1日 | 7:23 | 2月11日 | 7:13 | 2月21日 | 6:59 |
2月3日 | 7:22 | 2月13日 | 7:11 | 2月23日 | 6:57 |
2月5日 | 7:20 | 2月15日 | 7:08 | 2月25日 | 6:55 |
2月7日 | 7:17 | 2月17日 | 7:05 | 2月27日 | 6:52 |
2月9日 | 7:15 | 2月19日 | 7:02 | 2月28日 | 6:49 |
(Ⅰ)從表1的日期中隨機(jī)選出一天,試估計(jì)這一天的升旗時(shí)刻早于7:00的概率;
(Ⅱ)甲,乙二人各自從表2的日期中隨機(jī)選擇一天觀看升旗,且兩人的選擇相互獨(dú)立.記為這兩人中觀看升旗的時(shí)刻早于7:00的人數(shù),求的分布列和數(shù)學(xué)期望.
(Ⅲ)將表1和表2中的升旗時(shí)刻化為分?jǐn)?shù)后作為樣本數(shù)據(jù)(如7:31化為).記表2中所有升旗時(shí)刻對應(yīng)數(shù)據(jù)的方差為,表1和表2中所有升旗時(shí)刻對應(yīng)數(shù)據(jù)的方差為,判斷與的大小.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已數(shù)列的各項(xiàng)均為正整數(shù),且滿足,又.
(1)求的值,猜想的通項(xiàng)公式并用數(shù)學(xué)歸納法證明;
(2)設(shè),求的值;
(3)設(shè),是否存在最大的整數(shù),使得對任意,均有?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家統(tǒng)計(jì)局進(jìn)行第四次經(jīng)濟(jì)普查,某調(diào)查機(jī)構(gòu)從15個發(fā)達(dá)地區(qū),10個欠發(fā)達(dá)地區(qū),5個貧困地區(qū)中選取6個作為國家綜合試點(diǎn)地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū).普查過程中首先要進(jìn)行宣傳培訓(xùn),然后確定對象,最后入戶登記,由于種種情況可能會導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點(diǎn)經(jīng)驗(yàn),在某普查小區(qū),共有50家企事業(yè)單位,150家個體經(jīng)營戶,普查情況如下表所示:
普查對象類別 | 順利 | 不順利 | 合計(jì) |
企事業(yè)單位 | 40 | 10 | 50 |
個體經(jīng)營戶 | 90 | 60 | 150 |
合計(jì) | 130 | 70 | 200 |
(1)寫出選擇6個國家綜合試點(diǎn)地區(qū)采用的抽樣方法;
(2)根據(jù)列聯(lián)表判斷是否有97.5%的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”,分析造成這個結(jié)果的原因并給出合理化建議.
附:參考公式: ,其中
參考數(shù)據(jù):
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】梯形中,,矩形所在平面與平面垂直,且,.
(1)求證:平面平面;
(2)若P為線段上一點(diǎn),且異面直線與所成角為45°,求平面與平面所成銳角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個圓錐的體積為,當(dāng)這個圓錐的側(cè)面積最小時(shí),其母線與底面所成角的正切值為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com