【題目】已知表1和表2是某年部分日期的天安門廣場升旗時刻表.
表1:某年部分日期的天安門廣場升旗時刻表
日期 | 升旗時刻 | 日期 | 升旗時刻 | 日期 | 升旗時刻 | 日期 | 升旗時刻 |
1月1日 | 7:36 | 4月9日 | 5:46 | 7月9日 | 4:53 | 10月8日 | 6:17 |
1月21日 | 7:31 | 4月28日 | 5:19 | 7月27日 | 5:07 | 10月26日 | 6:36 |
2月10日 | 7:14 | 5月16日 | 4:59 | 8月14日 | 5:24 | 11月13日 | 6:56 |
3月2日 | 6:47 | 6月3日 | 4:47 | 9月2日 | 5:42 | 12月1日 | 7:16 |
3月22日 | 6:15 | 6月22日 | 4:46 | 9月20日 | 5:59 | 12月20日 | 7:31 |
表2:某年2月部分日期的天安門廣場升旗時刻表
日期 | 升旗時刻 | 日期 | 升旗時刻 | 日期 | 升旗時刻 |
2月1日 | 7:23 | 2月11日 | 7:13 | 2月21日 | 6:59 |
2月3日 | 7:22 | 2月13日 | 7:11 | 2月23日 | 6:57 |
2月5日 | 7:20 | 2月15日 | 7:08 | 2月25日 | 6:55 |
2月7日 | 7:17 | 2月17日 | 7:05 | 2月27日 | 6:52 |
2月9日 | 7:15 | 2月19日 | 7:02 | 2月28日 | 6:49 |
(Ⅰ)從表1的日期中隨機選出一天,試估計這一天的升旗時刻早于7:00的概率;
(Ⅱ)甲,乙二人各自從表2的日期中隨機選擇一天觀看升旗,且兩人的選擇相互獨立.記為這兩人中觀看升旗的時刻早于7:00的人數(shù),求的分布列和數(shù)學(xué)期望.
(Ⅲ)將表1和表2中的升旗時刻化為分?jǐn)?shù)后作為樣本數(shù)據(jù)(如7:31化為).記表2中所有升旗時刻對應(yīng)數(shù)據(jù)的方差為,表1和表2中所有升旗時刻對應(yīng)數(shù)據(jù)的方差為,判斷與的大小.(只需寫出結(jié)論)
【答案】(Ⅰ)(Ⅱ)(Ⅲ).
【解析】
試題分析:(Ⅰ)在表的個日期中,有個日期的升旗時刻早于,根據(jù)古典概型概率公式可估計這一天的升旗時刻早于的概率 ;(Ⅱ)可能的取值為,根據(jù)對立事件與獨立事件的概率公式求出各隨機變量對應(yīng)的概率,從而可得分布列,進而利用期望公式可得的數(shù)學(xué)期望;(Ⅲ)觀察表格數(shù)據(jù)可得,表中所有升旗時刻對應(yīng)數(shù)據(jù)較分散,可得.
試題解析:(Ⅰ)記事件A為“從表1的日期中隨機選出一天,這一天的升旗時刻早于”,
在表1的20個日期中,有15個日期的升旗時刻早于7:00,
所以 .
(Ⅱ)X可能的取值為.
記事件B為“從表2的日期中隨機選出一天,這一天的升旗時刻早于7:00”,
則 ,.
; ;
.
所以 X 的分布列為:
X | 0 | 1 | 2 |
P |
.
(Ⅲ).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)有居民人,為了迎接第十一個“全民健身日”的到來,居委會從中隨機抽取了名居民,統(tǒng)計了他們本月參加戶外運動時間(單位:小時)的數(shù)據(jù),并將數(shù)據(jù)進行整理,分為組:,,,,,得到如圖所示的頻率分布直方圖.
(Ⅰ)試估計該社區(qū)所有居民中,本月戶外運動時間不小于小時的人數(shù);
(Ⅱ)已知這名居民中恰有名女性的戶外運動時間在,現(xiàn)從戶外運動時間在的樣本對應(yīng)的居民中隨機抽取人,求至少抽到名女性的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在拋物線:上.
(1)求的方程;
(2)過上的任一點(與的頂點不重合)作軸于,試求線段中點的軌跡方程;
(3)在上任取不同于點的點,直線與直線交于點,過點作軸的垂線交拋物線于點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一只昆蟲的產(chǎn)卵數(shù)與溫度有關(guān),現(xiàn)收集了6組觀測數(shù)據(jù)與下表中.由散點圖可以發(fā)現(xiàn)樣本點分布在某一指數(shù)函數(shù)曲線的周圍.
溫度 | 21 | 23 | 25 | 27 | 29 | 31 |
產(chǎn)卵數(shù)/個 | 7 | 11 | 21 | 24 | 66 | 114 |
令,經(jīng)計算有:
26 | 40.5 | 19.50 | 6928 | 526.60 | 70 |
(1)試建立關(guān)于的回歸直線方程并寫出關(guān)于的回歸方程.
(2)若通過人工培育且培育成本與溫度和產(chǎn)卵數(shù)的關(guān)系為(單位:萬元),則當(dāng)溫度為多少時,培育成本最小?
注:對于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的焦點為,點在上且其橫坐標(biāo)為1,以為圓心、為半徑的圓與的準(zhǔn)線相切.
(1)求的值;
(2)過點的直線與交于,兩點,以、為鄰邊作平行四邊形,若點關(guān)于的對稱點在上,求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動圓與圓相外切且與軸相切,則動圓的圓心的軌跡記,
(1)求軌跡的方程;
(2)定點到軌跡(1)上任意一點的距離的最小值;
(3)經(jīng)過定點的直線,試分析直線與軌跡的公共點個數(shù),并指明相應(yīng)的直線的斜率是否存在,若存在求的取值或取值范圍情況.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com