(本小題滿分12分)已知A、BC三個箱子中各裝有2個完全相同的球,每個箱子里的球,有一個球標著號碼1,另一個球標著號碼2.現(xiàn)從A、B、C三個箱子中各摸出1個球.

(Ⅰ)若用數(shù)組中的分別表示從A、B、C三個箱子中摸出的球的號碼,請寫出數(shù)組的所有情形,并回答一共有多少種;

(Ⅱ)如果請您猜測摸出的這三個球的號碼之和,猜中有獎.那么猜什么數(shù)獲獎的可能性最大?請說明理由。

 

【答案】

(1)8;(2)猜4或5獲獎的可能性最大.

【解析】第一問中,先分析所有的情況為共有8種,

第二問,由于事件包含1個基本事件,事件包含3個基本事件,事件包含3個基本事件,事件包含1個基本事件,然后利用古典概型的概率計算公式得到,比較大小即可。

解:(Ⅰ)數(shù)組的所有情形為:(1,1,1),(1,1,2),(1,2,1),

(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2),共8種.

答:一共有8種.        ………………………5分

注:列出5、6、7種情形,得2分;列出所有情形,得4分;寫出所有情形共8種,得1分.

(Ⅱ)記“所摸出的三個球號碼之和為”為事件=3,4,5,6),  ………6分

易知,事件包含1個基本事件,事件包含3個基本事件,事件包含3個基本事件,事件包含1個基本事件,所以,  

,,,.          ……………………10分

故所摸出的兩球號碼之和為4、為5的概率相等且最大.

答:猜4或5獲獎的可能性最大.                 ……………………12分

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調查和預測,A產(chǎn)品的利潤與投資成正比,其關系如圖1,B產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案