已知數(shù)列{an}滿足a1=a(a>0,a∈N*),a1+a2+…+an-pan+1=0(p≠0,p≠-1,n∈N*).
(1)求數(shù)列{an}的通項公式an;
(2)若對每一個正整數(shù)k,若將ak+1,ak+2,ak+3按從小到大的順序排列后,此三項均能構成等差數(shù)列,且公差為dk.①求p的值及對應的數(shù)列{dk}.
②記Sk為數(shù)列{dk}的前k項和,問是否存在a,使得Sk<30對任意正整數(shù)k恒成立?若存在,求出a的最大值;若不存在,請說明理由.
(1)因為a1+a2+…+an-pan+1=0,所以n≥2時,a1+a2+…+an-1-pan=0,兩式相減,得=(n≥2),故數(shù)列{an}從第二項起是公比為的等比數(shù)列,又當n=1時,a1-pa2=0,解得a2=,
從而an=
(2)①由(1)得ak+1=k-1,
ak+2=k,ak+3=k+1,
若ak+1為等差中項,則2ak+1=ak+2+ak+3,
即=1或=-2,解得p=-;
此時ak+1=-3a(-2)k-1,ak+2=-3a(-2)k,
所以dk=|ak+1-ak+2|=9a·2k-1,
若ak+2為等差中項,則2ak+2=ak+1+ak+3,
即=1,此時無解;
若ak+3為等差中項,則2ak+3=ak+1+ak+2,
即=1或=-,解得p=-,
此時ak+1=-k-1,ak+3=-k+1,
所以dk=|ak+1-ak+3|=·k-1,
綜上所述,p=-,dk=9a·2k-1或p=-,
dk=·k-1.
②當p=-時,Sk=9a(2k-1).
則由Sk<30,得a<,
當k≥3時,<1,所以必定有a<1,
所以不存在這樣的最大正整數(shù).
當p=-時,Sk=,
則由Sk<30,得a<,因為>,所以a=13滿足Sk<30恒成立;但當a=14時,存在k=5,使得a>即Sk<30,
所以此時滿足題意的最大正整數(shù)a=13.
科目:高中數(shù)學 來源: 題型:
如圖是一個半圓形湖面景點的平面示意圖.已知為直徑,且km,為圓心,為圓周上靠近 的一點,為圓周上靠近 的一點,且∥.現(xiàn)在準備從經過到建造一條觀光路線,其中到是圓弧,到是線段.設,觀光路線總長為.
(1)求關于的函數(shù)解析式,并指出該函數(shù)的定義域;
(2)求觀光路線總長的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
某學生在校舉行的環(huán)保知識大獎賽中,答對每道題的概率都是, 答錯每道題的概率都是,答對一道題積5分,答錯一道題積-5分,答完n道題后的總積分記為.
(1)答完2道題后,求同時滿足S1=5且的概率;
(2)答完5道題后,設,求的分布列及其數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知極坐標系的極點與直角坐標系的原點重合,極軸與軸的正半軸重合.若直線的極坐標方程為.
(1)把直線的極坐標方程化為直角坐標系方程;
(2)已知為橢圓上一點,求到直線的距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com