已知過點(diǎn)P(2,2)的直線l與圓(x-1)2+y2=5相切,且與直線ax-y+1=0平行,求a.
考點(diǎn):圓的切線方程
專題:計(jì)算題,直線與圓
分析:由題意判斷點(diǎn)在圓上,求出切點(diǎn)與圓心連線與直線ax-y+1=0垂直,然后求出a的值即可.
解答: 解:因?yàn)辄c(diǎn)P(2,2)滿足圓(x-1)2+y2=5的方程,所以P在圓上,
又過點(diǎn)P(2,2)的直線與圓(x-1)2+y2=5相切,且與直線ax-y+1=0平行,
所以切點(diǎn)與圓心連線與直線ax-y+1=0垂直,
所以直線ax-y+1=0的斜率為:a=-
2-1
2-0
=-
1
2
點(diǎn)評(píng):本題考查直線與圓的位置關(guān)系,直線與直線的平行,考查轉(zhuǎn)化數(shù)學(xué)與計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+mx2-m2x+1(m為常數(shù),且m>0),當(dāng)x=-2時(shí)有極大值.
(1)求m的值;
(2)若曲線y=f(x)有斜率為-5的切線,求此切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)證明:f(x)=x+
1
x
在(1,+∞)上是增函數(shù).
(Ⅱ)求證:tan2α-sin2α=tan2αsin2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x)=2x+m•2-x
(1)求m的值,并求當(dāng)f(x)>2-x時(shí),實(shí)數(shù)x的取值范圍;
(2)當(dāng)x∈[-2,1]時(shí),不等式f(x)<k恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2-2bx+b(a≠0).
(1)若a∈{-2,-1,2},b∈{0,1},求滿足f(1)>0的概率;
(2)若a∈(0,1),b∈(-1,1),求滿足f(1)>0的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù).
單位x(元)88.28.48.68.89
銷量y(件)908483807568
(1)若y與x的線性關(guān)系為:
y
=-20x+a,求a.
(2)預(yù)計(jì)在今后的銷售中,銷量y與單價(jià)仍然服從(1)中的有關(guān)系,且該產(chǎn)品的成本為4元/件,為了使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知2x≤(
1
4
x-3,求函數(shù)y=(
1
2
x的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別是△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,
3
(c-acosB)=b(sinA+1).
(Ⅰ)求sinA;
(Ⅱ)若a=10,b+c=14,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=
4•2014x+2
2014x+1
+xcosx(-1≤x≤1),設(shè)f(x)的最大值是M,最小值是N,則M+N=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案