已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/16/d/knnds1.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性,并證明.

(1);(2)減函數(shù),證明詳見解析;

解析試題分析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/66/2/opvfv.png" style="vertical-align:middle;" />是奇函數(shù),且定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/16/d/knnds1.png" style="vertical-align:middle;" />,可由列式求出的值,但要注意只是本題中的是奇函數(shù)的必要條件,然后還要驗(yàn)證充分性;(2)判斷函數(shù)的單調(diào)性在解答題中一般利用增函數(shù)或減函數(shù)的定義,或利用導(dǎo)函數(shù)的符號(hào)判斷.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/66/2/opvfv.png" style="vertical-align:middle;" />是奇函數(shù),且定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/16/d/knnds1.png" style="vertical-align:middle;" />,所以,   2分
所以,所以              4分
,知
經(jīng)驗(yàn)證,當(dāng)時(shí),是奇函數(shù),所以                  7分
(2)函數(shù)上為減函數(shù)                       9分
證明:法一:由(1)知,
,則,             12分
,
函數(shù)上為減函數(shù)          14分
法二:由(1)知,
,                            12分

函數(shù)上為減函數(shù).              14分
考點(diǎn):函數(shù)的奇偶性、函數(shù)的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中常數(shù)滿足
(1)若,判斷函數(shù)的單調(diào)性;
(2)若,求時(shí)的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)= 是奇函數(shù)
(1)求實(shí)數(shù)m的值
(2)若函數(shù)f(x)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),且
(1)求實(shí)數(shù)的值;
(2)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f1/f/zc7s2.png" style="vertical-align:middle;" />,
(1)求;
(2)當(dāng)時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)二次函數(shù)在區(qū)間上的最大值、最小值分別是,集合
(Ⅰ)若,且,求的值;
(Ⅱ)若,且,記,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知A、B、C是直線上的不同三點(diǎn),O是外一點(diǎn),向量滿足,記;
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)
(1)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)時(shí),求函數(shù)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)若,求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)設(shè)函數(shù).若至少存在一個(gè),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案