精英家教網 > 高中數學 > 題目詳情

函數
(1)時,求函數的單調區(qū)間;
(2)時,求函數上的最大值.

(1)的減區(qū)間為,增區(qū)間為.
(2)時,函數上的最大值為.

解析試題分析:(1)首先確定函數的定義域,求導數,然后利用,可得減區(qū)間;利用,可得增區(qū)間.(2)求函數最值的常用方法是,求導數,求駐點,計算駐點函數值、區(qū)間端點函數值,比較大小,得出最值.
試題解析:(1)時,的定義域為
              2分
因為,由,則,則      3分
的減區(qū)間為,增區(qū)間為                     4分
(2)時,的定義域為
                            5分
,則
,其根判別式,
設方程的兩個不等實根,                6分

,顯然,且,從而                 7分
,單調遞減                  8分
,單調遞增                9分
上的最大值為的較大者                    10分
,其中
                                             11分
,則
上是增函數,有            12分
上是增函數,有,            13分

所以時,函數上的最大值為       14分
考點:利用導數研究函數的單調性、最值

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知為奇函數,且當時,.當時,的最大值為,最小值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知定義域為的函數是奇函數.
(1)求的值;
(2)判斷函數的單調性,并證明.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中
(1)對于函數,當時,,求實數的取值集合;
(2)當時,的值為負,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數, .
(1)若, 函數 在其定義域是增函數,求的取值范圍;
(2)在(1)的結論下,設函數的最小值;
(3)設函數的圖象與函數的圖象交于點,過線段的中點軸的垂線分別交于點、,問是否存在點,使處的切線與處的切線平行?若存在,求出的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中e為自然對數的底數,且當x>0時恒成立.
(Ⅰ)求的單調區(qū)間;
(Ⅱ)求實數a的所有可能取值的集合;
(Ⅲ)求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,,其中R.
(1)討論的單調性;
(2)若在其定義域內為增函數,求正實數的取值范圍;
(3)設函數,當時,若,總有成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,若函數圖象上任意一點關于原點的對稱點的軌跡恰好是函數的圖象.
(1)寫出函數的解析式;
(2)當時總有成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數在點處的切線方程為,且對任意的,恒成立.
(Ⅰ)求函數的解析式;
(Ⅱ)求實數的最小值;
(Ⅲ)求證:).

查看答案和解析>>

同步練習冊答案