已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a5-a1=15,a4-a2=6.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)cn=log2a1+log2a2+…+log2an+1,若數(shù)學(xué)公式恒成立,求實(shí)數(shù)M的最小值.

解:(1)設(shè)等比數(shù)列的公比為q,由已知有a1q4-a1=15,a1q3-a1q=6,顯然q≠1,
兩式相除得2q2-5q+2=0或q=2,…2分
舍去,…4分
q=2?a1=1,?an=2n-1(n∈N*)…6分
(2)由已知有…8分<2…10分
恒成立,只需2≤M,所以Mmin=2…12分
分析:(1)根據(jù)等比數(shù)列的通項(xiàng)公式為an=a1qn-1求出a1和q,從而得到通項(xiàng)公式;
(2)因?yàn)閏n=log2a1+log2a2+…+log2an+1,從而可求cn,進(jìn)而可求其倒數(shù),利用裂項(xiàng)求和,從而可得其最小值,故可解.
點(diǎn)評(píng):本題以等比數(shù)列為載體,考查等比數(shù)列的通項(xiàng),考查裂項(xiàng)求和法的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5、已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a2=9,a5=243.
(1)求{an}的通項(xiàng)公式;
(2)令bn=log3an,求數(shù)列{
1bnbn+1
}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}滿足a1•a7=3a3a4,則數(shù)列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數(shù)列的第5項(xiàng),第3項(xiàng),第2項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an,求數(shù)列{|bn|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習(xí)冊(cè)答案