【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系 中,直線 的參數(shù)方程為 為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,圓 的極坐標(biāo)方程為 .
(1)寫出直線 的普通方程及圓 的直角坐標(biāo)方程;
(2)點(diǎn) 是直線 上的點(diǎn),求點(diǎn) 的坐標(biāo),使 到圓心 的距離最小.

【答案】
(1)解:由 消去參數(shù) ,得直線 的普通方程為 ,

, ,即圓 的直角坐標(biāo)方程為


(2)解: ,

時(shí) 最小,此時(shí) .


【解析】(1)根據(jù)題意結(jié)合已知條件消參化為直線的一般方程,再由參數(shù)方程與直角坐標(biāo)方程的互化關(guān)系即可得出圓的直角坐標(biāo)方程。(2)根據(jù)題意把點(diǎn)的坐標(biāo)代入到兩點(diǎn)間的結(jié)論公式整理可得出關(guān)于t的一元二次方程,借助二次函數(shù)的最值求出點(diǎn)P到圓心的最小距離。
【考點(diǎn)精析】認(rèn)真審題,首先需要了解直線的參數(shù)方程(經(jīng)過點(diǎn),傾斜角為的直線的參數(shù)方程可表示為為參數(shù))).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知ABC三個(gè)頂點(diǎn)坐標(biāo)為A(7,8),B(104),C(2,-4)

(1)求BC邊上的中線所在直線的方程;

(2)求BC邊上的高所在直線的方程.

【答案】(1);(2)

【解析】試題分析:(1)根據(jù)中點(diǎn)坐標(biāo)公式求出中點(diǎn)的坐標(biāo),根據(jù)斜率公式可求得的斜率,利用點(diǎn)斜式可求邊上的中線所在直線的方程;(2)先根據(jù)斜率公式求出的斜率,從而求出邊上的高所在直線的斜率為,利用點(diǎn)斜式可求邊上的高所在直線的方程.

試題解析:1)由B(10,4),C(2,-4),BC中點(diǎn)D的坐標(biāo)為(60),

所以AD的斜率為k8,

所以BC邊上的中線AD所在直線的方程為y08(x6)

8xy480

2)由B(10,4),C(2,-4),BC所在直線的斜率為k1,

所以BC邊上的高所在直線的斜率為-1,

所以BC邊上的高所在直線的方程為y8=-(x7),即xy150

型】解答
結(jié)束】
17

【題目】已知直線lx2y2m20

(1)求過點(diǎn)(2,3)且與直線l垂直的直線的方程;

(2)若直線l與兩坐標(biāo)軸所圍成的三角形的面積大于4,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出s的值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知關(guān)于的不等式.

(1)當(dāng)時(shí),求此不等式的解集.

(2)求關(guān)于的不等式(其中)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列、,其中, ,數(shù)列滿足,,數(shù)列滿足

(1)求數(shù)列,的通項(xiàng)公式;

(2)是否存在自然數(shù),使得對(duì)于任意恒成立?若存在,求出的最小值;

(3)若數(shù)列滿足,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過定點(diǎn)P(1,1),且傾斜角為 ,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的坐標(biāo)系中,曲線C的極坐標(biāo)方程為
(1)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于不同的兩點(diǎn)A,B,求|AB|及|PA||PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+m與函數(shù) 的圖象上至少存在一對(duì)關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)m的取值范圍是(
A.
B.
C.
D.[2﹣ln2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高三年級(jí)有學(xué)生1 000名,經(jīng)調(diào)查,其中750名同學(xué)經(jīng)常參加體育鍛煉(稱為A類同學(xué)),另外250名同學(xué)不經(jīng)常參加體育鍛煉(稱為B類同學(xué)),現(xiàn)用分層抽樣方法(按A類、B類分兩層)從該年級(jí)的學(xué)生中共抽查100名同學(xué),如果以身高達(dá)165 cm作為達(dá)標(biāo)的標(biāo)準(zhǔn),對(duì)抽取的100名學(xué)生,得到以下列聯(lián)表:

身高達(dá)標(biāo)

身高不達(dá)標(biāo)

總計(jì)

經(jīng)常參加體育鍛煉

40

不經(jīng)常參加體育鍛煉

15

總計(jì)

100


(1)完成上表;
(2)能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為經(jīng)常參加體育鍛煉與身高達(dá)標(biāo)有關(guān)系(K2的觀測(cè)值精確到0.001)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 為參數(shù)),圓 ( 為參數(shù)),
(Ⅰ)當(dāng) 時(shí),求 的交點(diǎn)坐標(biāo);
(Ⅱ)過坐標(biāo)原點(diǎn) 的垂線,垂足為 , 的中點(diǎn),當(dāng) 變化時(shí),求 點(diǎn)軌跡的參數(shù)方程,并指出它是什么曲線.

查看答案和解析>>

同步練習(xí)冊(cè)答案