【題目】已知數(shù)列、,其中, ,數(shù)列滿足,,數(shù)列滿足

(1)求數(shù)列,的通項公式;

(2)是否存在自然數(shù),使得對于任意恒成立?若存在,求出的最小值;

(3)若數(shù)列滿足,求數(shù)列的前項和.

【答案】(1) .

(2) 的最小值為16.

(3) .

【解析】試題分析:第一問將式子變形,得到兩項的比值,之后用累乘法求得通項公式,一定需要注意對進行驗證;第二問轉(zhuǎn)化成最值來處理,第三問需要對為奇數(shù)和為偶數(shù)兩種情況進行討論求得結(jié)果.

(1),即

,所以

. ……………………2

當(dāng)時,上式成立,故 ……………………3

因為,所以是首項為2,公比為2的等比數(shù)列,

. ……………………5

(2) 由(1)知,則

.……………………7

假設(shè)存在自然數(shù),使得對于任意恒成立,即恒成立,由,解得……………………9

所以存在自然數(shù),使得對于任意恒成立,此時, 的最小值為16. ……………………………………10

(3)當(dāng)為奇數(shù)時,

;………………13

當(dāng)為偶數(shù)時,

. ………………15

因此

………………16

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項數(shù)列{an}的首項a1=1,且(n+1)a +anan+1﹣na =0對n∈N*都成立.
(1)求{an}的通項公式;、
(2)記bn=a2n﹣1a2n+1 , 數(shù)列{bn}的前n項和為Tn , 證明:Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在考試測評中,常用難度曲線圖來檢測題目的質(zhì)量,一般來說,全卷得分高的學(xué)生,在某道題目上的答對率也應(yīng)較高,如果是某次數(shù)學(xué)測試壓軸題的第1、2問得分難度曲線圖,第1、2問滿分均為6分,圖中橫坐標(biāo)為分數(shù)段,縱坐標(biāo)為該分數(shù)段的全體考生在第1、2問的平均難度,則下列說法正確的是(
A.此題沒有考生得12分
B.此題第1問比第2問更能區(qū)分學(xué)生數(shù)學(xué)成績的好與壞
C.分數(shù)在[40,50)的考生此大題的平均得分大約為4.8分
D.全體考生第1問的得分標(biāo)準(zhǔn)差小于第2問的得分標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位為綠化環(huán)境,移栽了甲、乙兩種大樹各2株.設(shè)甲、乙兩種大樹移栽的成活率分別為 ,且各株大樹是否成活互不影響.求移栽的4株大樹中:
(1)兩種大樹各成活1株的概率;
(2)成活的株數(shù)ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知公比為整數(shù)的正項等比數(shù)列滿足: ,

1)求數(shù)列的通項公式;

2)令,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系 中,直線 的參數(shù)方程為 為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,圓 的極坐標(biāo)方程為 .
(1)寫出直線 的普通方程及圓 的直角坐標(biāo)方程;
(2)點 是直線 上的點,求點 的坐標(biāo),使 到圓心 的距離最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式|x+3|﹣2x﹣1<0的解集為(x0 , +∞)
(Ⅰ)求x0的值;
(Ⅱ)若函數(shù)f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零點,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某漁船在航行中不幸遇險,發(fā)出呼叫信號,我海軍艦艇在處獲悉后,立即測出該漁船在方位角(從指北方向順時針轉(zhuǎn)到目標(biāo)方向線的水平角)為,距離為15海里的處,并測得漁船正沿方位角為的方向,以15海里/小時的速度向小島靠攏,我海軍艦艇立即以海里/小時的速度前去營救,求艦艇靠近漁船所需的最少時間和艦艇的航向.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某工廠開展群眾體育活動的情況,擬采用分層抽樣的方法從AB,C三個區(qū)中抽取7個工廠進行調(diào)查,已知A,B,C區(qū)中分別有18,27,18個工廠

(Ⅰ)求從A,B,C區(qū)中分別抽取的工廠個數(shù);

(Ⅱ)若從抽取的7個工廠中隨機抽取2個進行調(diào)查結(jié)果的對比,求這2個工廠中至少有1個來自A區(qū)的概率。

查看答案和解析>>

同步練習(xí)冊答案