【題目】為調(diào)查甲、乙兩校高三年級(jí)學(xué)生某次聯(lián)考數(shù)學(xué)成績(jī)情況,用簡(jiǎn)單隨機(jī)抽樣,從這兩校中各抽取30名高三年級(jí)學(xué)生,以他們的數(shù)學(xué)成績(jī)百分制作為樣本,樣本數(shù)據(jù)的莖葉圖如圖.

1若甲校高三年級(jí)每位學(xué)生被抽取的概率為0.05,求甲校高三年級(jí)學(xué)生總?cè)藬?shù),并估計(jì)甲校高三年級(jí)這次聯(lián)考數(shù)學(xué)成績(jī)的及格率60分及60分以上為及格;

2設(shè)甲、乙兩校高三年級(jí)學(xué)生這次聯(lián)考數(shù)學(xué)平均成績(jī)分別為12,估計(jì)12的值.

【答案】1;2

【解析】

試題分析:1設(shè)甲校高三年級(jí)學(xué)生總?cè)藬?shù)為估計(jì)甲校高三年級(jí)這次聯(lián)考數(shù)學(xué)成績(jī)的及格率為;2設(shè)甲、乙兩校樣本平均數(shù)分別為,

的估計(jì)值為分.

試題解析:

1設(shè)甲校高三年級(jí)學(xué)生總?cè)藬?shù)為.

由題意知,解得.

樣本中甲校高三年級(jí)學(xué)生數(shù)學(xué)成績(jī)不及格人數(shù)為,據(jù)此估計(jì)甲校高三年級(jí)這次聯(lián)考數(shù)學(xué)成績(jī)的及格率為.

2設(shè)甲、乙兩校樣本平均數(shù)分別為

根據(jù)樣本莖葉圖可知

.

因此.故的估計(jì)值為分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】脫貧是政府關(guān)注民生的重要任務(wù),了解居民的實(shí)際收入狀況就顯得尤為重要.現(xiàn)從某地區(qū)隨機(jī)抽取個(gè)農(nóng)戶,考察每個(gè)農(nóng)戶的年收入與年積蓄的情況進(jìn)行分析,設(shè)第個(gè)農(nóng)戶的年收入(萬元),年積蓄(萬元),經(jīng)過數(shù)據(jù)處理得

(Ⅰ)已知家庭的年結(jié)余對(duì)年收入具有線性相關(guān)關(guān)系,求線性回歸方程;

(Ⅱ)若該地區(qū)的農(nóng)戶年積蓄在萬以上,即稱該農(nóng)戶已達(dá)小康生活,請(qǐng)預(yù)測(cè)農(nóng)戶達(dá)到小康生活的最低年收入應(yīng)為多少萬元?

附:在 中, 其中為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線C的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線L的參數(shù)方程是t為參數(shù)).

1求曲線C的直角坐標(biāo)方程和直線L的普通方程;

2設(shè)點(diǎn)Pm,0,若直線L與曲線C交于兩點(diǎn)A,B,且,求實(shí)數(shù)m的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

1當(dāng)時(shí),求函數(shù)的零點(diǎn);

2的單調(diào)區(qū)間;

3當(dāng)時(shí),若對(duì)恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

將圓上每一點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍得到曲線

1)寫出曲線的參數(shù)方程;

2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸坐標(biāo)建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,若分別為曲線和直線上的一點(diǎn),求的最近距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),且離心率為

1求橢圓的標(biāo)準(zhǔn)方程;

2若點(diǎn)與點(diǎn)均在橢圓上,且關(guān)于原點(diǎn)對(duì)稱,問:橢圓上是否存在點(diǎn)點(diǎn)在一象限,使得為等邊三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,側(cè)面底面,中點(diǎn),.

(I)在線段上是否存在點(diǎn),使得//平面,指出點(diǎn)的位置并證明;

II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某煙花廠家為了測(cè)試最新研制出的一種“沖天”產(chǎn)品升空的安全性,特對(duì)其進(jìn)行了一項(xiàng)測(cè)試。如圖,這種煙花燃放點(diǎn)C進(jìn)行燃放實(shí)驗(yàn),測(cè)試人員甲、乙分別在A,B兩地(假設(shè)三地同一水平面上,測(cè)試人員甲測(cè)得A、B兩地相距80且∠BAC=60°,甲聽到煙花燃放“沖天”時(shí)的聲音的時(shí)間比秒.在A地測(cè)得該煙花升至最高點(diǎn)H處的仰角為6.(已知聲音的傳播速度為340秒)

(1)求甲距燃放點(diǎn)C的距離;(2)求這種煙花的垂直“沖天”高度HC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著節(jié)假日外出旅游人數(shù)增多,倡導(dǎo)文明旅游的同時(shí),生活垃圾處理也面臨新的挑戰(zhàn),某海濱城市沿海有三個(gè)旅游景點(diǎn),在岸邊兩地的中點(diǎn)處設(shè)有一個(gè)垃圾回收站點(diǎn)(如圖),兩地相距10,從回收站觀望地和地所成的視角為,且,設(shè);

(1)用分別表示,并求出的取值范圍;

(2)某一時(shí)刻太陽與三點(diǎn)在同一直線,此時(shí)地到直線的距離為,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案