已知函數(shù)其中a是實(shí)數(shù).設(shè),為該函數(shù)圖象上的兩點(diǎn),且
(1)指出函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)的圖象在點(diǎn)A,B處的切線互相垂直,且,求的最小值;
(3)若函數(shù)f(x)的圖象在點(diǎn)A,B處的切線重合,求a的取值范圍.

(1)[-1,0),(0,+∞)
(2)1
(3)(-ln2-1,+∞)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) 
(1)當(dāng)在點(diǎn)處的切線方程是y=x+ln2時(shí),求a的值.
(2)當(dāng)的單調(diào)遞增區(qū)間是(1,5)時(shí),求a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng),時(shí),試用含的式子表示,并討論的單調(diào)區(qū)間;
(2)若有零點(diǎn),,且對函數(shù)定義域內(nèi)一切滿足的實(shí)數(shù)
①求的表達(dá)式;
②當(dāng)時(shí),求函數(shù)的圖像與函數(shù)的圖像的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;
(2)當(dāng)時(shí),求函數(shù)在區(qū)間上的最小值;
(3)記函數(shù)圖象為曲線,設(shè)點(diǎn),是曲線上不同的兩點(diǎn),點(diǎn)為線段的中點(diǎn),過點(diǎn)軸的垂線交曲線于點(diǎn).試問:曲線在點(diǎn)處的切線是否平行于直線?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖象在點(diǎn)處的切線方程為
.
(1)求實(shí)數(shù)的值;
(2)設(shè).
①若上的增函數(shù),求實(shí)數(shù)的最大值;
②是否存在點(diǎn),使得過點(diǎn)的直線若能與曲線圍成兩個(gè)封閉圖形,則這兩個(gè)封閉圖形的面積總相等.若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)設(shè),求函數(shù)的圖像在處的切線方程;
(2)求證:對任意的恒成立;
(3)若,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)試判斷函數(shù)的單調(diào)性;  
(2)設(shè),求上的最大值;
(3)試證明:對任意,不等式都成立(其中是自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),其中b≠0.
(1)當(dāng)b>時(shí),判斷函數(shù)在定義域上的單調(diào)性:
(2)求函數(shù)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中ma均為實(shí)數(shù).
(1)求的極值;
(2)設(shè),若對任意的,恒成立,求的最小值;
(3)設(shè),若對任意給定的,在區(qū)間上總存在,使得成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案