已知函數(shù) .
(1)當(dāng)在點(diǎn)處的切線方程是y=x+ln2時(shí),求a的值.
(2)當(dāng)的單調(diào)遞增區(qū)間是(1,5)時(shí),求a的取值集合.
(1);(2).
解析試題分析:(1)利用導(dǎo)數(shù)的幾何意義,先求,利用,解出;
(2)函數(shù)的單調(diào)遞增區(qū)間是,所以導(dǎo)函數(shù)的解集為,所以先求函數(shù)的導(dǎo)數(shù),的解集為即的兩個(gè)實(shí)根為或,根據(jù)根與系數(shù)的關(guān)系得到.
(1),,代入 5分
(2),的解集為即的兩個(gè)實(shí)根為或,根據(jù)根與系數(shù)的關(guān)系得到,a的取值集合為 10分
考點(diǎn):1.導(dǎo)數(shù)的幾何意義;2.導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)若當(dāng)時(shí),函數(shù)的最大值為,求的值;
(2)設(shè)(為函數(shù)的導(dǎo)函數(shù)),若函數(shù)在上是單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)若在區(qū)間上是減函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)定義在上,,導(dǎo)函數(shù),.
(1)求的單調(diào)區(qū)間和最小值;
(2)討論與的大小關(guān)系;
(3)是否存在,使得對(duì)任意成立?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=ax3+(a-2)x+c的圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)若g(x)=-2ln x在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)討論函數(shù)在上的單調(diào)性;
(2)當(dāng)時(shí),曲線上總存在相異兩點(diǎn),,,使得曲線在、處的切線互相平行,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(,).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處切線的方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)其中a是實(shí)數(shù).設(shè),為該函數(shù)圖象上的兩點(diǎn),且.
(1)指出函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)的圖象在點(diǎn)A,B處的切線互相垂直,且,求的最小值;
(3)若函數(shù)f(x)的圖象在點(diǎn)A,B處的切線重合,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(1)討論函數(shù)的極值點(diǎn);
(2)若對(duì)任意的,恒有,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com