分析:(Ⅰ) 由 a
n=S
n-S
n-1 (n≥2),結(jié)合條件可得
Sn - Sn-1=1,結(jié)論得證.
(Ⅱ)求出數(shù)列{b
n}的通項(xiàng)公式,分類討論,用錯(cuò)位相加法求它的和 T
n.
解答:解:(Ⅰ)由 a
n=S
n-S
n-1 (n≥2),及 S
n=n
2a
n-n(n-1)得
S
n=n
2(S
n-S
n-1)-n(n-1),即 (n
2-1 )S
n-n
2S
n-1=n(n-1),
∴
Sn - Sn-1=1,∴{
Sn}是首項(xiàng)為1,公差為1的等差數(shù)列.
(Ⅱ)故由(I)得
Sn=1+(n-1)=n,∴S
n=
.
∵f
n(x)=
x
n+1 =
xn+1,∴f′
n(x)=nx
n,∴b
n=na
n,
∴T
n=a+2a
2+3a
3+A+na
n ①.
當(dāng)a=0 時(shí),T
n=0; 當(dāng)a=1時(shí),T
n=1+2+3+A+n=
;
當(dāng) a≠1時(shí) aT
n=a
2+2a
3+3a
4+A+na
n+1 ②,
由①-②得( 1-a)T
n=a+a
2+a
3+A+a
n-na
n+1=
-nan+1,
∴T
n=
- .
綜上得 T
n=
.
點(diǎn)評:本題考查等差關(guān)系的確定,列求和的方法,體現(xiàn)了分類討論的數(shù)學(xué)的思想,分類討論求 Tn是解題的難點(diǎn).