若A點坐標(biāo)為(1,1),F(xiàn)1是橢圓5x2+9y2=45的左焦點,點P是橢圓上的動點,則|PA|+|PF1|的最小值為( 。
A、2+
17
B、5+
5
C、6+
2
D、6-
2
考點:橢圓的簡單性質(zhì)
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:|PF1|+|PF2|=2a=6,|PF1|=6-|PF2|,所以,|PF1|+|PA|=6-|PF2|+|PA|=6+(|PA|-|PF2|),由此結(jié)合圖象能求出|PF1|+|PA|的最小值.
解答: 解:∵|PF1|+|PF2|=2a=6
那么,|PF1|=6-|PF2|
所以,|PF1|+|PA|=6-|PF2|+|PA|=6+(|PA|-|PF2|)
根據(jù)三角形三邊關(guān)系可知,當(dāng)點P位于P1時,|PA|-|PF2|的差最小,此時F2與A點連線交橢圓于P1,易得-|AF2|=-
2

此時,|PF1|+|PA|也得到最小值,其值為6-
2

故選:D.
點評:本題考查橢圓的性質(zhì)和應(yīng)用,解題時要注意數(shù)形結(jié)合法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-3bx+3b在(-2,0)內(nèi)有極大值,則實數(shù)b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在二面角α-l-β的一個面α內(nèi)有一條直線AB,若AB與棱l的夾角為45°,AB與平面β所成的角為30°,則此二面角的大小是( 。
A、30°
B、30°或150°
C、45°
D、45°或135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2+a4=4,a3+a5=10,則a5+a7=( 。
A、16B、18C、22D、28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,設(shè)
AB
=
a
,
AC
=
b
,AP的中點為Q,BQ的中點為R,CR的中點為P,若
AP
=m
a
+n
b
,則m+n=( 。
A、
6
7
B、1
C、
8
7
D、
10
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A,B,則A⊆B是A∩B=A成立的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2
x2
+lnx,則( 。
A、x=2為f(x)的極大值點
B、x=2為f(x)的極小值點
C、x=
1
2
為f(x)的極大值點
D、x=
1
2
為f(x)的極小值點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)如圖,長方體ABCD-A1B1C1D1,有一動點在此長方體內(nèi)隨機運動,則此動點在三棱錐A-A1BD內(nèi)的概率為( 。
A、
1
2
B、
1
3
C、
1
4
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2-2x+c在x=-2時有極大值6,在x=1時有極小值.
(1)求a,b的值;
(2)求函數(shù)f(x)的極小值.

查看答案和解析>>

同步練習(xí)冊答案