“a>2”是“關(guān)于x的不等式|x+1|+|x-1|≤a的解集非空”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)絕對值不等式的性質(zhì),利用充分條件和必要條件的定義進行判斷即可得到結(jié)論.
解答: 解:若關(guān)于x的不等式|x+1|+|x-1|≥2,
則要使關(guān)于x的不等式|x+1|+|x-1|≤a的解集非空,則a≥2,
∴當“a>2”是“關(guān)于x的不等式|x+1|+|x-1|≤a的解集非空”的充分不必要條件,
故選:A
點評:本題主要考查充分條件和必要條件的判斷,根據(jù)絕對值的性質(zhì)是解決本題的關(guān)鍵,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=2,an+1=2an(n∈N*),Sn數(shù)列{an}的前n項和,則S6的值
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sinx-cosx的圖象可由函數(shù)y=sinx+cosx的圖象經(jīng)過下列哪種變換得到( 。
A、向右平移
π
4
個單位
B、向右平移
π
2
個單位
C、向左平移
π
4
個單位
D、向左平移
π
2
個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖分別表示輸出22,22+42,22+42+62,…,22+42+62+…+20142值得過程的一個程序框圖,那么在圖中①②分別填上( 。
A、i≤2014,i=i+1
B、i≤1007,i=i+1
C、i≤2014,i=i+2
D、i≤1007,i=i+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線y=m(0<m<2)與函數(shù)y=sinωx+cosωx(ω>0)的圖象依次交于A(1,m),B(5,m),C(7,m)三點,則ω=( 。
A、
π
3
B、
π
4
C、
π
2
D、
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)變量x,y滿足不等式組
0≤x+y≤20
1≤y≤10
,則2x+3y的最大值等于( 。
A、1B、10C、41D、50

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,f(x)=
1
3
a2x3-ax2+
2
3
,g(x)=-ax+1,x∈R.
(1)當 a=1時,求 f(x)在點(1,f(1))處的切線方程;
(2)若在區(qū)間(0,
1
2
]上至少有一個實數(shù)x0,使 f(x0)>g(x0),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三菱柱ABC-A1B1C1中,AA1B1B為矩形,平面AA1B1B⊥平面ABC.∠ABC=90°,AB=BC=
1
2
AA1=1,點F為AC的中點,點E為AA1上一點.
(1)求證:平面BEF⊥平面AA1C1C;
(2)當AE的長為何值時,二面角A1-C1E-B1為60°?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某房地產(chǎn)開發(fā)公司用800萬元購得一塊土地,該土地可以建造每層1000平方米的樓房,已知第一層每平方米的建筑費用為600元,樓房每升高一層,每平方米的建筑費用增加40元.若把樓房建成n層后,每平方米的平均綜合費用最低(綜合費用是建筑費用與購地費用之和),則n=
 

查看答案和解析>>

同步練習冊答案