(本小題滿分12分)

某大學高等數(shù)學老師上學期分別采用了兩種不同的教學方式對甲、乙兩個大一新生班進行教改試驗(兩個班人數(shù)均為60人,入學數(shù)學平均分數(shù)和優(yōu)秀率都相同;勤奮程度和自覺性都一樣),F(xiàn)隨機抽取甲、乙兩班各20名同學的上學期數(shù)學期末考試成績,得到莖葉圖如下:

(Ⅰ)依莖葉圖判斷哪個班的平均分高?

(Ⅱ)從乙班這20名同學中隨機抽取兩名高等數(shù)學成績不得低于85分的同學,求成績?yōu)?0分的同學被抽中的概率;

(Ⅲ)學校規(guī)定:成績不低于85分的為優(yōu)秀,請?zhí)顚懴旅娴?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013042219471901602039/SYS201304221948097816603074_ST.files/image003.png">列聯(lián)表,并判斷“能否在犯錯誤的概率不超過0.025的前提下認為成績優(yōu)秀與教學方式有關(guān)?”

 

甲班

乙班

合計

優(yōu)秀

 

 

 

不優(yōu)秀

 

 

 

合計

 

 

 

下面臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:其中) 

(Ⅳ)從乙班高等數(shù)學成績不低于85分的同學中抽取2人,成績不低于90分的同學得獎金100元,否則得獎金50元,記為這2人所得的總獎金,求的分布列和數(shù)學期望。

 

【答案】

(1) 乙班的平均分高 (2)

(3) 在犯錯誤的概率不超過0.025的前提下可以認為成績優(yōu)秀與教學方式有關(guān)

(4)150

【解析】

試題分析:解:

(Ⅰ)甲班高等數(shù)學成績集中于60-90分之間,而乙班數(shù)學成績集中于80-100分之間,所以乙班的平均分高 ………………………………2分

(Ⅱ)………………………………4分

(Ⅲ)

 

甲班

乙班

合計

優(yōu)秀

3

10

13

不優(yōu)秀

17

10

27

合計

20

20

40

………………………………6分

,因此在犯錯誤的概率不超過0.025的前提下可以認為成績優(yōu)秀與教學方式有關(guān)!8分

(Ⅳ)

所以

100元

150元

200元

………………………………10分

(元) ………………………………12分

考點:莖葉圖,獨立性檢驗、分布列等知識的運用

點評:解題的關(guān)鍵是理解莖葉圖表示數(shù)字特征的求解,以及分布列的求和和數(shù)學期望值的運用。屬于基礎題。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案