已知橢圓內(nèi)有一點P,以P為中點作弦MN,則直線MN的方程是(   )
A.B.
C.D.
B
設(shè)
;(2)-(1)得:
所以MN方程為;即
。故選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓中心在原點,焦點在軸上,離心率,過橢圓的右焦點且垂直于長軸的弦長為
(1)求橢圓的標準方程;
(2)為橢圓左頂點,為橢圓上異于的任意兩點,若,求證:直線過定點并求出定點坐標。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分14分)已知的頂點,在橢圓上,在直線上,且.
(1)當邊通過坐標原點時,求的長及的面積;
(2)當,且斜邊的長最大時,求所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點在橢圓C:上,且橢圓C的離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點作直線交橢圓C于點, 的垂心為,是否存在實數(shù),使得垂心在Y軸上.若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線y=一x與橢圓C: =1(a>b>0)交于A、B兩點,以線段AB為直徑的圓恰好經(jīng)過橢圓的右焦點,則橢圓C的離心率為.
A.       B.         C.         D.4-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓(a>b>0)的離心率 
該橢圓上一點,
(I)求橢圓的方程.
(II)過點作直線與橢圓相交于點,若以為直徑的圓經(jīng)原點,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.一個正方形內(nèi)接于橢圓,并有兩邊垂直于橢圓長軸且分別經(jīng)過它的焦點則橢圓的離心率為(。
A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)橢圓的左、右焦點分別為,點滿足.
(1)求橢圓的離心率;
(2)設(shè)直線與橢圓相交于A,B兩點.若直線與圓相交于M,N兩點,且|MN|=|AB|,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的右焦點到直線的距離是   ▲   

查看答案和解析>>

同步練習(xí)冊答案