設(shè)|x-2|a時,不等式|-4|1成立,求正數(shù)a的取值范圍

答案:
解析:

解:|x-2|a,∴ 2-ax2+a

  又|x2-4|1,∴ 3x25

  ∴ 

  當(dāng)a-2-(舍去)

  當(dāng)

  ∴ 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在區(qū)間[-1,1]上的偶函數(shù)f(x)與函數(shù)g(x)的圖象關(guān)于直線x=1對稱,且當(dāng)x∈[2,3]時,g(x)=
a3
(x-2)-4(x-2)3
 (0<a<36),求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇三模)已知函數(shù)f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的導(dǎo)函數(shù).
(1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范圍;
(2)解關(guān)于x的方程f(x)=|f′(x)|;
(3)設(shè)函數(shù)g(x)=
f(x),f(x)≥f(x)
f(x),f(x)<f(x)
,求g(x)在x∈[2,4]時的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),對任意的x∈R,都有f(2-x)=f(x+2),且當(dāng)x∈[-2,0]時,f(x)=(
1
2
x-1,若關(guān)于x的方程f(x)-loga(x+2)=0(a>1)在區(qū)間(-2,6)內(nèi)恰有三個不同實(shí)根,則實(shí)數(shù)a的取值范圍是
34
,2]
34
,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

設(shè)|x-2|a時,不等式|-4|1成立,求正數(shù)a的取值范圍

查看答案和解析>>

同步練習(xí)冊答案