如圖,在軸上方有一段曲線弧,其端點(diǎn)、軸上(但不屬于),對(duì)上任一點(diǎn)及點(diǎn),滿足:.直線,分別交直線兩點(diǎn).

(Ⅰ)求曲線弧的方程;
(Ⅱ)求的最小值(用表示);
(I).(II).

試題分析:(I)由橢圓的定義,曲線是以,為焦點(diǎn)的半橢圓,
利用的關(guān)系,得到的方程為.
要特別注意有限制.
(II)設(shè)并代入橢圓方程得到,根據(jù),,可以得到直線的方程,進(jìn)一步令可,的縱坐標(biāo)分別,將用縱坐標(biāo)表出,應(yīng)用“基本不等式”,得到其最小值.
本解答即體現(xiàn)此類問題的一般解法“設(shè)而不求”,又反映數(shù)學(xué)知識(shí)的靈活應(yīng)用.
試題解析:(I)由橢圓的定義,曲線是以,為焦點(diǎn)的半橢圓,

的方程為.          4分
(注:不寫區(qū)間“”扣1分)
(II)由(I)知,曲線的方程為,設(shè)
則有,即 ①   
,從而直線的方程為
AP:;   BP:         6分
,的縱坐標(biāo)分別為
;     .
②  將①代入②, 得.        8分
.
當(dāng)且僅當(dāng),即時(shí),取等號(hào).
的最小值是.        12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓)的右焦點(diǎn),右頂點(diǎn),右準(zhǔn)線

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)動(dòng)直線與橢圓有且只有一個(gè)交點(diǎn),且與右準(zhǔn)線相交于點(diǎn),試探究在平面直角坐標(biāo)系內(nèi)是否存在點(diǎn),使得以為直徑的圓恒過(guò)定點(diǎn)?若存在,求出點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的中心在原點(diǎn),焦點(diǎn)F在軸上,離心率,點(diǎn)在橢圓C上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若斜率為的直線交橢圓兩點(diǎn),且、成等差數(shù)列,點(diǎn)M(1,1),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到兩點(diǎn)的距離之和等于4,設(shè)點(diǎn)的軌跡為曲線C,直線過(guò)點(diǎn)且與曲線C交于A,B兩點(diǎn).
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)是否存在△AOB面積的最大值,若存在,求出△AOB的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為B,離心率為,圓軸交于兩點(diǎn)
(Ⅰ)求的值;
(Ⅱ)若,過(guò)點(diǎn)與圓相切的直線的另一交點(diǎn)為,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,且經(jīng)過(guò)點(diǎn)
(Ⅰ)求橢圓的方程;
(Ⅱ)如果過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn)(點(diǎn)與點(diǎn)不重合),
①求的值;
②當(dāng)為等腰直角三角形時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的左、右焦點(diǎn)分別為上兩點(diǎn),,則橢圓的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的右焦點(diǎn)為F,其右準(zhǔn)線與軸的交點(diǎn)為A,在橢圓上存在點(diǎn)P滿足線段AP的垂直平分線過(guò)點(diǎn)F,則橢圓離心率的取值范圍是(          )
A.(0,]B.(0,]C.[,1)D.[,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若△ABC頂點(diǎn)B,C的坐標(biāo)分別為(-4,0),(4,0),AC,AB邊上的中線長(zhǎng)之和為30,則△ABC的重心G的軌跡方程為(     )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案