已知橢圓的右焦點為,上頂點為B,離心率為,圓軸交于兩點
(Ⅰ)求的值;
(Ⅱ)若,過點與圓相切的直線的另一交點為,求的面積
(Ⅰ);(Ⅱ)

試題分析:(Ⅰ)根據(jù)橢圓的定義、幾何性質(zhì)可求;(Ⅱ)直線與橢圓相交,聯(lián)立消元,設(shè)點代入化簡,利用點到直線的距離來求
試題解析:(Ⅰ)由題意,,,,

,,
,
,,
  (4分)
(Ⅱ)當(dāng)時,,,得在圓F上,
直線,則設(shè)
,
又點到直線的距離,
的面積   (12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在軸上方有一段曲線弧,其端點、軸上(但不屬于),對上任一點及點,,滿足:.直線,分別交直線,兩點.

(Ⅰ)求曲線弧的方程;
(Ⅱ)求的最小值(用表示);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓長軸的左右端點分別為A,B,短軸的上端點為M,O為橢圓的中心,F(xiàn)為橢圓的右焦點,且·=1,||=1.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l交橢圓于P,Q兩點,問:是否存在直線l,使得點F恰為△PQM的垂心?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓方程為,過右焦點斜率為1的直線到原點的距離為.

(1)求橢圓方程.
(2)已知為橢圓的左右兩個頂點,為橢圓在第一象限內(nèi)的一點,為過點且垂直軸的直線,點為直線與直線的交點,點為以為直徑的圓與直線的一個交點,求證:三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓)右頂點到右焦點的距離為,短軸長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過左焦點的直線與橢圓分別交于、兩點,若線段的長為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的上、下頂點分別為,點在橢圓上,且異于點,直線與直線分別交于點,

(Ⅰ)設(shè)直線的斜率分別為,求證:為定值;
(Ⅱ)求線段的長的最小值;
(Ⅲ)當(dāng)點運動時,以為直徑的圓是否經(jīng)過某定點?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等邊△ABC中,D、E分別是CA、CB的中點,以A、B為焦點且過D、E的橢圓和雙曲線的離心率分別為、,則下列關(guān)于、的關(guān)系式不正確的是(  )
A.       B.      C.         D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓上一點M到焦點F1的距離為2,N是MF1的中點.則|ON|等于(    )
A.2B.4C.8D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓長軸長、短軸長和焦距成等差數(shù)列,則該橢圓的離心率是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案