設(shè)x,y滿足約束條件
x≥2
3x-y≥1
y≥x+1
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最小值為2,則ab的最大值為
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式對應(yīng)的平面區(qū)域,利用z的幾何意義確定取得最小值的條件,然后利用基本不等式進行求則ab的最大值.
解答: 解:由z=ax+by(a>0,b>0)得y=-
a
b
x+
z
b
,
∵a>0,b>0,
∴直線的斜率-
a
b
<0

作出不等式對應(yīng)的平面區(qū)域如圖:
平移直線得y=-
a
b
x+
z
b
,由圖象可知當(dāng)直線y=-
a
b
x+
z
b
經(jīng)過點A時,直線y=-
a
b
x+
z
b
的截距最小,此時z最小.
x=2
y=x+1
,解得
x=2
y=3
,即A(2,3),
此時目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最小值為2,
即2a+3b=2,∴2=2a+3b≥2
6ab
,
即ab≤
1
6

當(dāng)且僅當(dāng)2a=3b=1,即a=
1
2
,b=
1
3
時取等號.
故ab的最大值為
1
6

故答案為:
1
6
點評:本題主要考查線性規(guī)劃的基本應(yīng)用,以及基本不等式的應(yīng)用,利用數(shù)形結(jié)合求出目標(biāo)函數(shù)取得最大值的條件是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直平行六面體ADD1A1-BCC1B1中,BC=1,CC1=2,AB=
2
,∠BCC1=
π
3

(Ⅰ)求證:BC1⊥平面ABC;
(Ⅱ)當(dāng)E為CC1的中點時,求二面角A-B1E-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

汽車從路燈正下方開始向前作變速行駛,汽車影長為l(t)=(t-1)3+t+1(t的單位是秒),則汽車影長變化最快的時刻是第
 
秒.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的圖象如所示,設(shè)其定義域為A,值域為C;則對于下列表述:
①A=[-5,6);
②A=[-5,0]∪[2,6);
③C=[0,+∞);
④C=[2,5];
⑤方程f(x)=1的解只有一個;
⑥對于值域C中的每一個y,在A中都有唯一的x與之對應(yīng);
正確的有
 
(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對大于或等于2的自然數(shù)m的n次方冪有如下分解式:
22=1+3     32=1+3+5       42=1+3+5+7          52=1+3+5+7+9        …
23=3+5     33=7+9+11      43=13+15+17+19      …
24=7+9     34=25+27+29    …
照此規(guī)律,54的分解式中的第三個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:y=x+1與橢圓C:ax2+y2=2(a>1)交于A、B兩點,若OA⊥OB,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列An:a1,a2…an(n∈N*,n≥3)滿足a1=an=0,且當(dāng)2≤k≤n(k∈N* )時,(ak-ak-12=1,
令S(An)=
n
i=1
ai
.則
(1)S(A5)的所有可能的值構(gòu)成的集合為
 

(2)當(dāng)An存在時,S(An)的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)Z滿足(1+i)Z=1+2i,則在復(fù)平面內(nèi),Z的共軛復(fù)數(shù)的點位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(n)為n2+1的各位數(shù)字之和(n∈N*).如:因為142+1=197,1+9+7=17,所以f(14)=17.記f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,則f2005(8)=( 。
A、5B、8C、11D、17

查看答案和解析>>

同步練習(xí)冊答案