直線y=x+m與橢圓=1有兩個公共點,則m的取值范圍是(    )
A.(-5,5)B.(-12,12)C.(-13,13)D.(-15,15)
C
兩個方程聯(lián)立得
169x2+288mx+144m2-25×144=0.
Δ=(288m)2-4×169×144(m2-25)>0,
即4×122×122m2-4×144×169(m2-25)>0.
化為132×25>(132-122)m2,
解得-13<m<13.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C過點是橢圓的左焦點,P、Q是橢圓C上的兩個動點,且|PF|、|MF|、|QF|成等差數(shù)列。
(1)求橢圓C的標準方程;
(2)求證:線段PQ的垂直平分線經(jīng)過一個定點A;
(3)設(shè)點A關(guān)于原點O的對稱點是B,求|PB|的最小值及相應(yīng)點P的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)橢圓ax2+by2=1與直線x+y=1相交于A、B兩點,且|AB|=2.又AB的中點M與橢圓中心連線的斜率為,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)橢圓=1的焦點為F1、F2,P是橢圓上任意一點,一條斜率為的直線交橢圓于A、B兩點,如果當a變化時,總可同時滿足:
①∠F1PF2的最大值為;
②直線l:ax+y+1=0平分線段AB.
求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

給定四條曲線:①x2+y2=;②+=1;?③x2+=1;④+y2=1.其中與直線x+y-5=0僅有一個交點的曲線是(   )
A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在橢圓+=1上取三點,其橫坐標滿足x1+x3=2x2,三點順次與某一焦點連接的線段長是r1、r2、r3,則有(    )
A.r1、r2、r3成等差數(shù)列B.r1、r2、r3成等比數(shù)列
C.、成等差數(shù)列D.、成等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知不論k為何實數(shù),直線y=kx+b與橢圓+=1總有公共點,則b的取值范?圍是(   )
A.(-5,5)B.[-5,5)C.[-5,5]D.[-5,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的短軸的一個端點到一個焦點的距離為5,焦點到橢圓中心的距離為3,則橢
圓的標準方程是(    )
A.+=1或+=1
B.+=1或+=1
C.=1或+=1
D.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

α∈(0,),方程x2sinα+y2cosα=1表示焦點在y軸上的橢圓,則α的取值范圍是______.

查看答案和解析>>

同步練習冊答案