已知橢圓C過點(diǎn)是橢圓的左焦點(diǎn),P、Q是橢圓C上的兩個(gè)動(dòng)點(diǎn),且|PF|、|MF|、|QF|成等差數(shù)列。
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求證:線段PQ的垂直平分線經(jīng)過一個(gè)定點(diǎn)A;
(3)設(shè)點(diǎn)A關(guān)于原點(diǎn)O的對稱點(diǎn)是B,求|PB|的最小值及相應(yīng)點(diǎn)P的坐標(biāo)。
(1)(2)(3)
(1)設(shè)橢圓的方程為,由已知,得,解得
所以橢圓的標(biāo)準(zhǔn)方程為  …………3分
(2)證明:設(shè)。由橢圓的標(biāo)準(zhǔn)方程為,可知

同理………4分
,∴
…………5分
①當(dāng)時(shí),由,得
從而有
設(shè)線段的中點(diǎn)為,由         …………6分
得線段的中垂線方程為…………7分
,該直線恒過一定點(diǎn)…………8分
②當(dāng)時(shí),
線段的中垂線是軸,也過點(diǎn),
∴線段的中垂線過點(diǎn)…………10分
(3)由,得。
,∴
…………12分
時(shí),點(diǎn)的坐標(biāo)為…………14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為,過點(diǎn)與橢圓交于兩點(diǎn).
(1)若直線的斜率為1,且,求橢圓的標(biāo)準(zhǔn)方程;
(2)若(1)中橢圓的右頂點(diǎn)為,直線的傾斜角為,問為何值時(shí),取得最大值,并求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),一條準(zhǔn)線的方程為,過橢圓的左焦點(diǎn),且方向向量為的直線交橢圓于兩點(diǎn),的中點(diǎn)為
(1)求直線的斜率(用、表示);
(2)設(shè)直線的夾角為,當(dāng)時(shí),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓C,經(jīng)過橢圓C的右焦點(diǎn)F且斜率為kk≠0)的直線l交橢圓G于A、B兩點(diǎn),M為線段AB的中點(diǎn),設(shè)O為橢圓的中心,射線OM交橢圓于N點(diǎn).

(1)是否存在k,使對任意m>0,總有成立?若存在,求出所有k的值;
(2)若,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知向量,經(jīng)過定點(diǎn)且方向向量為的直線與經(jīng)過定點(diǎn)且方向向量為的直線交于點(diǎn)M,其中R,常數(shù)a>0.
(1)求點(diǎn)M的軌跡方程;
(2)若,過點(diǎn)的直線與點(diǎn)M的軌跡交于C、D兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個(gè)焦分別為.過右焦點(diǎn)且與軸垂直的
直線與橢圓相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足,
)試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對稱點(diǎn)落在橢圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓上一點(diǎn)到直線與到點(diǎn)(-2,0)的距離之比為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),設(shè)直線經(jīng)過點(diǎn),且與軸交于
點(diǎn)F(2,0)。
(I)求直線的方程;
(II)如果一個(gè)橢圓經(jīng)過點(diǎn)P,且以點(diǎn)F為它的一個(gè)焦點(diǎn),求橢圓的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線y=x+m與橢圓=1有兩個(gè)公共點(diǎn),則m的取值范圍是(    )
A.(-5,5)B.(-12,12)C.(-13,13)D.(-15,15)

查看答案和解析>>

同步練習(xí)冊答案