【題目】下列說法中,錯誤的是(

A.一條直線與兩個平行平面中的一個平面相交,則必與另一個平面相交

B.平行于同一個平面的兩個不同平面平行

C.若直線l與平面平行,則過平面內(nèi)一點且與直線l平行的直線在平面內(nèi)

D.若直線l不平行于平面,則在平面內(nèi)不存在與l平行的直線

【答案】D

【解析】

由直線與平面相交的性質(zhì)知A正確,由平面平行的判定定理知B正確,由直線與平面平行的性質(zhì)定理知C正確,當時,在平面內(nèi)存在與平行的直線,故D不正確.

由直線與平面相交的性質(zhì),知一條直線與兩個平行平面中的一個相交則必與另一個平面相交,故A是正確的;

由平面平行的判定定理知,平行于同一平面的兩個不同平面平行,故B正確;

根據(jù)直線與平面平行的性質(zhì)定理知,若直線l與平面平行,則過平面內(nèi)一點且與直線l平行的直線在平面內(nèi)是正確的,故C正確;

若直線l不平行于平面,則當時,在平面內(nèi)存在與平行的直線,故D不正確.

故選:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】“節(jié)能減排,綠色生態(tài)”為當今世界各國所倡導,某公司在科研部門的鼎力支持下,進行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該公 司每月的處理量(噸)至少為50噸,至多為220噸.月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系式近似表示為:,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為120元.

(1)該公司每月處理量為多少噸時,才能使每噸的平均處理成本最低?

(2)每月處理量為多少噸時,月獲利最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 的一段圖像如圖所示.

(1)求此函數(shù)的解析式;

(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線)與橢圓相交所得的弦長為

)求拋物線的標準方程;

)設(shè)上異于原點的兩個不同點,直線的傾斜角分別為,當,變化且為定值)時,證明:直線恒過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A{x|2a1≤x≤3a5}B{x|x<-1,或x16},分別根據(jù)下列條件求實數(shù)a的取值范圍.

1A∩B;(2AA∩B).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),的最小正期為.

(1)求的單調(diào)增區(qū)間;

(2)方程上有且只有一個解,求實數(shù)的取值范圍;

(3)是否存在實數(shù)滿足對任意,都存在,使得成立.若存在,求的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為的菱形, 底面, ,且

1證明:平面平面;

2若直線與平面所成的角為求二面角

的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,討論函數(shù)的單調(diào)性;

(Ⅱ)若方程沒有實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】空氣質(zhì)量指數(shù)(簡稱:)是定量描述空氣質(zhì)量狀況的無量綱指數(shù),空氣質(zhì)量按照大小分為六級:為優(yōu),為良,為輕度污染,為中度污染,為重度污染,為嚴重污染.下面記錄了北京市天的空氣質(zhì)量指數(shù),根據(jù)圖表,下列結(jié)論錯誤的是( )

A. 在北京這天的空氣質(zhì)量中,按平均數(shù)來考察,最后天的空氣質(zhì)量優(yōu)于最前面天的空氣質(zhì)量 B. 在北京這天的空氣質(zhì)量中,有天達到污染程度

C. 在北京這天的空氣質(zhì)量中,12月29日空氣質(zhì)量最好 D. 在北京這天的空氣質(zhì)量中,達到空氣質(zhì)量優(yōu)的天數(shù)有

查看答案和解析>>

同步練習冊答案