【題目】關(guān)于平面向量 , ,下列結(jié)論正確的個(gè)數(shù)為( ) ①若 = ,則 = ;
②若 =(1,k), =(﹣2,6), ,則k=﹣3;
③非零向量 滿(mǎn)足| |=| |=| |,則 + 的夾角為30°;
④已知向量 ,且 的夾角為銳角,則實(shí)數(shù)λ的取值范圍是
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

【答案】C
【解析】解:對(duì)于①,若 = ,則 )=0,不一定有 = ,可能 ,( )垂直,故不正確; 對(duì)于②,若 =(1,k), =(﹣2,6), ,即有﹣2k=6,則k=﹣3,故正確;
對(duì)于③,非零向量 滿(mǎn)足| |=| |=| |,則| |2=| |2=| |2=| |2+| |2﹣2 ,即有 = | |2 ,
+ )= 2+ = | |2 , | + |= = | |,
+ 的夾角的余弦值為 = ,由夾角的范圍[0°,180°),可得夾角為30°,故正確;
對(duì)于④,已知向量 ,且 的夾角為銳角,
可得 )>0,且 不共線,即有1+λ+2(2+λ)>0,且2(1+λ)≠2+λ,
解得λ>﹣ 且λ≠0,故不正確.
其中正確的個(gè)數(shù)為2.
故選:C.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用命題的真假判斷與應(yīng)用,掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次馬拉松比賽中,30名運(yùn)動(dòng)員的成績(jī)(單位:分鐘)的莖葉圖如圖所示.若將運(yùn)動(dòng)員按成績(jī)由好到差編號(hào)為1﹣30號(hào),再用系統(tǒng)抽樣方法從中抽取6人,則其中成績(jī)?cè)趨^(qū)間[130,151]上的運(yùn)動(dòng)員人數(shù)是(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和Sn , 且a3=7,S11=143, (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=2 +2n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知c=2,C=
(1)若b= ,求角B;
(2)若sinC+sin(B﹣A)=2sin2A,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次考試中,五位學(xué)生的數(shù)學(xué),物理成績(jī)?nèi)缦卤硭荆?/span>

(1)要從5名學(xué)生中選2人參加一項(xiàng)活動(dòng),求選中的學(xué)生中至少有一人的物理成績(jī)高于90分的概率;

(2)根據(jù)上表數(shù)據(jù),畫(huà)出散點(diǎn)圖并用散點(diǎn)圖說(shuō)明物理成績(jī)與數(shù)學(xué)成績(jī)之間線性相關(guān)關(guān)系的強(qiáng)弱,如果具有較強(qiáng)的線性相關(guān)關(guān)系,求的線性回歸方程(系數(shù)精確到0.01);如果不具有線性相關(guān)關(guān)系,請(qǐng)說(shuō)明理由.

參考公式:

回歸直線的方程是,其中, ,

是與對(duì)應(yīng)的回歸估計(jì)值,

參考數(shù)據(jù): , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且
(1)求角A的值;
(2)若∠B= ,BC邊上中線AM= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知長(zhǎng)為2的線段A B兩端點(diǎn)A和B分別在x軸和y軸上滑動(dòng),線段AB的中點(diǎn)M的軌跡為曲線C. (Ⅰ)求曲線C的方程;
(Ⅱ)點(diǎn)P(x,y)是曲線C上的動(dòng)點(diǎn),求3x﹣4y的取值范圍;
(Ⅲ)已知定點(diǎn)Q(0, ),探究是否存在定點(diǎn)T(0,t)(t )和常數(shù)λ滿(mǎn)足:對(duì)曲線C上任意一點(diǎn)S,都有|ST|=λ|SQ|成立?若存在,求出t和λ;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{ an}是一個(gè)公差大于0的等差數(shù)列,且滿(mǎn)足a3a6=55,a2+a7=16.
(1)求數(shù)列{ an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿(mǎn)足 +…+ =an (n∈N* 求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著我國(guó)經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長(zhǎng).設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額)如下表:

年份

2010

2011

2012

2013

2014

時(shí)間代號(hào)t

1

2

3

4

5

儲(chǔ)蓄存款y(千億元)

5

6

7

8

10

(Ⅰ)求y關(guān)于t的回歸方程 = t+
(Ⅱ)用所求回歸方程預(yù)測(cè)該地區(qū)2015年(t=6)的人民幣儲(chǔ)蓄存款.
附:回歸方程 = t+

查看答案和解析>>

同步練習(xí)冊(cè)答案