14.已知集合M={x|-1<x<3},N={x|x2+2x-3<0},則集合M∩N等于( 。
A.{x|-1<x<3}B.{x|-3<x<1}C.{x|-1<x<1}D.{x|-3<x<3}

分析 先求出集合N,由此能求出M∩N.

解答 解:∵集合M={x|-1<x<3},
N={x|x2+2x-3<0}={x|-3<x<1},
∴集合M∩N={x|-1<x<1}.
故選:C.

點評 本題考查交集的求法,是基礎題,解題時要認真審題,注意交集定義的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.將甲、乙等5位同學分別保送到北京大學、上海交通大學、浙江大學三所大學就讀,則每所大學至少保送一人的不同保送方法有( 。
A.240種B.180種C.150種D.540種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.將全集正正整數(shù)排成一個三角形數(shù)陣:

根據(jù)以上排列規(guī)律,數(shù)陣中第n行的從左到右的第3個數(shù)是$\frac{{n}^{2}-n+6}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設函數(shù)f(x)=$x+\frac{a}{x+1}$,x∈[0,+∞).
(1)當a=2時,求函數(shù)f(x)的最小值;
(2)當0<a<1時,求函數(shù)f(x)的最小值.
(3)當a=2時,且(x+1)f(x)-bx+b>0在[1,+∞)恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在銳角△ABC中,角A,B所對的邊分別為a,b,若$2b•sinA=\sqrt{2}a$,則角B等于(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若(1-2x)2017=a0+a1x+…+a2017x2017(x∈R),則$\frac{a_1}{2^2}+\frac{a_2}{2^3}+…+\frac{{{a_{2017}}}}{{{2^{2018}}}}$=( 。
A.$\frac{1}{2}$B.1C.$-\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知等比數(shù)列{an}中,a1=2,公比q=-2,則通項公式a2n=-4n  .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知拋物線y2=2px(p>0)的焦點恰是橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$的一個焦點,過點T(p,0)且傾斜角為60°的直線與拋物線交于A,B兩點.
(1)求拋物線的方程;
(2)求線段|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知F1,F(xiàn)2是雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左,右焦點,點M在E上,MF1與x軸垂直,sin∠MF2F1=$\frac{1}{3}$,則E的離心率為(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步練習冊答案