19.若(1-2x)2017=a0+a1x+…+a2017x2017(x∈R),則$\frac{a_1}{2^2}+\frac{a_2}{2^3}+…+\frac{{{a_{2017}}}}{{{2^{2018}}}}$=(  )
A.$\frac{1}{2}$B.1C.$-\frac{1}{2}$D.-1

分析 令x=0,可得1=a0.令x=$\frac{1}{2}$,即可求出.

解答 解:由(1-2x)2017=a0+a1x+…+a2017x2017(x∈R),
令x=0,可得1=a0
令x=$\frac{1}{2}$,可得a0+$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$=0,
∴$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$=-1,
兩邊同乘以$\frac{1}{2}$得$\frac{a_1}{2^2}+\frac{a_2}{2^3}+…+\frac{{{a_{2017}}}}{{{2^{2018}}}}$=-$\frac{1}{2}$,
故選:C

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用、方程的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)變量x,y滿足約束件$\left\{\begin{array}{l}{x-y+2≥0}\\{2x-5y+10≤0}\\{x+y-4≤0}\end{array}\right.$則目標(biāo)函數(shù)z=3x-4y的最大值為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)y=$\sqrt{3}$sin(2x-$\frac{π}{6}$)+2sin2(x-$\frac{π}{12}$),x∈R
(1)求y的最小正周期
(2)求y的最大值及此時(shí)x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在等比數(shù)列{an}中,a1=1,公比q=2,則a3的值為( 。
A.2B.3C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知集合M={x|-1<x<3},N={x|x2+2x-3<0},則集合M∩N等于( 。
A.{x|-1<x<3}B.{x|-3<x<1}C.{x|-1<x<1}D.{x|-3<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.△ABC中,$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AC}=\overrightarrow b$,$\overrightarrow{BD}=\frac{1}{2}\overrightarrow{DC}$,則$\overrightarrow{AD}$=(  )
A.$\frac{2}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$B.$\frac{1}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$C.$\frac{1}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$D.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.甲、乙二人做射擊游戲,甲、乙射擊擊中與否是相互獨(dú)立事件.規(guī)則如下:若射擊一次擊中,則原射擊人繼續(xù)射擊;若射擊一次不中,就由對(duì)方接替射擊.已知甲、乙二人射擊一次擊中的概率均為$\frac{1}{3}$,且第一次由甲開(kāi)始射擊.
①求前3次射擊中甲恰好擊中2次的概率$\frac{2}{27}$;
②求第4次由甲射擊的概率$\frac{13}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知向量$\vec a=(\sqrt{3}sinωx,-cosωx),\vec b=(cosωx,cosωx)$,函數(shù)f(x)=$\overrightarrow a•\overrightarrow b+\frac{1}{2}$(ω>0)的最小正周期是π.
(1)求ω的值及函數(shù)f(x)的單調(diào)減區(qū)間;
(2)當(dāng)$x∈[0,\frac{π}{2}]$時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x-1上,求圓C的方程
(2)若過(guò)原點(diǎn)的直線m與圓C有公共點(diǎn),求直線m的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案