在△ABC中,若tanAtanB=1,則△ABC的形狀是( 。
A、等邊三角形
B、等腰三角形
C、等腰直角三角形
D、直角三角形
考點:三角形的形狀判斷
專題:三角函數(shù)的求值
分析:tanAtanB=1⇒
sinAsinB-cosAcosB
cosAcosB
=0,從而可得cos(A+B)=0,于是可得答案.
解答: 解:在△ABC中,∵tanAtanB=1,
sinAsinB-cosAcosB
cosAcosB
=0,
∴sinAsinB-cosAcosB=-cos(A+B)=0,
∴cos(π-C)=0,即cosC=0,C=90°,
∴△ABC為直角三角形,
故選:D.
點評:本題考查三角形的形狀判斷,考查兩角和的余弦與誘導公式的應用,“切”化“弦”是關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知m,n為直線,a,b為平面,給出下列命題,其中的正確命題序號是
 

m⊥α
m⊥n
⇒n∥α  ②
m⊥β
n⊥β
⇒m∥n  ③
m⊥α
m⊥β
⇒α∥β  ④
m?α
n?β⇒m∥n
α∥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩人練習射擊,命中目標的概率分別為
1
2
1
3
,甲、乙兩人各射擊一次,目標被命中的概率為( 。
A、
2
3
B、
1
3
C、
1
6
D、
5
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)的定義域為開區(qū)間(a,b),導函數(shù)f′(x)在(a,b)內(nèi)的圖象如圖所示,則函數(shù)f(x)在開區(qū)間(a,b)內(nèi)有極小值( 。
A、2個B、1個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩個平面α,β,直線l⊥α,直線m?β,有下面四個命題:
①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l⊥m⇒α∥β;④l∥m⇒α⊥β,其中正確命題有( 。
A、①②B、①④C、②③D、①③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將函數(shù)f(x)=2sin(2x-θ)-3的圖象F,向左平移
π
6
個單位,向上平移3個單位得到圖象F′,若F′的一條對稱軸是直線x=
π
4
,則θ的一個可能取值是(  )
A、-
π
6
B、-
π
3
C、
π
2
D、
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=(x-1)2+n (x∈[-1,3],n∈N*)的最小值為an,最大值為bn,記cn=bn2-anbn,則{cn}是( 。
A、常數(shù)數(shù)列
B、公比不為1的等比數(shù)列
C、公差不為0的等差數(shù)列
D、非等差數(shù)列也非等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

.
z
為復數(shù)z的共軛復數(shù),且
.
z
•i=1+2i,則z等于( 。
A、2-iB、2+i
C、1+2iD、1-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn為等差數(shù)列{an}的前n項和,且滿足a2+a2013=32,則log2
S2014
2014
=( 。
A、6B、5C、4D、3

查看答案和解析>>

同步練習冊答案