【題目】如圖,在邊長為4的菱形中, ,點(diǎn)、分別在邊、上.點(diǎn)與點(diǎn)、不重合, , ,沿將翻折到的位置,使平面平面.
(Ⅰ)求證: 平面;
(Ⅱ)記三棱錐的體積為,四棱錐的體積為,且,求此時(shí)線段的長.
【答案】(1)見解析,(2).
【解析】試題分析:
(1)根據(jù)EF⊥AC得PO⊥EF,由平面PEF⊥平面ABEFD結(jié)合面面垂直的性質(zhì)定理,證出PO⊥平面ABEFD,從而得到PO⊥BD.由此結(jié)合AO⊥BD,利用線面垂直判定定理即可證出BD⊥平面POA;
(2)由PO⊥平面ABEFD,得PO是三棱錐P﹣ABD和四棱錐P﹣BDEF的高,因此將 化簡(jiǎn)可得S△ABD= S四邊形BDEF,從而得到S△CEF= S△BCD.最后根據(jù)△CEF∽△CDB,利用面積比等于相似比的平方,結(jié)合菱形ABCD中有關(guān)數(shù)據(jù)即可算出此時(shí)線段PO的長等于 .
(Ⅰ)證明:在菱形中,∵,∴. ∵,∴,
∵平面⊥平面,平面平面 ,且平面,
∴平面, ∵平面,∴.
∵,∴平面.
(Ⅱ)設(shè).由(Ⅰ)知, 平面,
∴為三棱錐及四棱錐的高,
∴,∵,
∴,∴,
∵,
∴,∴∽. ∴,
∴, ∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log2(x+2)與g(x)=(x﹣a)2+1,若對(duì)任意的x1∈[2,6),都存在x2∈[0,2],使得f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,為測(cè)量山高M(jìn)N,選擇A和另一座山的山頂C為測(cè)量觀測(cè)點(diǎn).從A點(diǎn)測(cè)得 M點(diǎn)的仰角∠MAN=60°,C點(diǎn)的仰角∠CAB=45°以及∠MAC=75°;從C點(diǎn)測(cè)得∠MCA=60°.已知山高BC=100m,則山高M(jìn)N=m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x),g(x)都是定義在R上的函數(shù),且滿足以下條件:
①f(x)=axg(x)(a>0,a≠1);
②g(x)≠0;
③f(x)g'(x)>f'(x)g(x);
若 ,則a= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為考察高中生的性別與是否喜歡數(shù)學(xué)課程之間的關(guān)系,在某城市的某校高中生中,從男生中隨機(jī)抽取了70人,從女生中隨機(jī)抽取了50人,男生中喜歡數(shù)學(xué)課程的占,女生中喜歡數(shù)學(xué)課程的占,得到如下列聯(lián)表.
喜歡數(shù)學(xué)課程 | 不喜歡數(shù)學(xué)課程 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
(1)請(qǐng)將列聯(lián)表補(bǔ)充完整;試判斷能否有90%的把握認(rèn)為喜歡數(shù)學(xué)課程與否與性別有關(guān);
(2)從不喜歡數(shù)學(xué)課程的學(xué)生中采用分層抽樣的方法,隨機(jī)抽取6人,現(xiàn)從6人中隨機(jī)抽取2人,求抽取的學(xué)生中至少有1名是女生的概率..
附:,其中.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)多面體的直觀圖(圖1)及三視圖(圖2)如圖所示,其中M,N分別是AF,BC的中點(diǎn)
(1)求證:MN∥平面CDEF:
(2)求二面角A﹣CF﹣B的余弦值;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com