【題目】已知集合M是滿足下列性質(zhì)的函數(shù)的全體;在定義域內(nèi)存在實數(shù)t,使得
.
(1)判斷是否屬于集合M,并說明理由;
(2)若屬于集合M,求實數(shù)a的取值范圍;
(3)若,求證:對任意實數(shù)b,都有
.
【答案】(1)不屬于,理由詳見解析;(2);(3)詳見解析.
【解析】
(1)利用f(x)=3x+2,通過f(t+2)=f(t)+f(2)推出方程無解,說明f(x)=3x+2不屬于集合M;
(2)由屬于集合M,推出
有實解,即(a﹣6)x2+4ax+6(a﹣2)=0有實解,對參數(shù)分類討論,利用判斷式求解即可;
(3)當f(x)=2x+bx2時,方程f(x+2)=f(x)+f(2)3×2x+4bx﹣4=0,令g(x)=3×2x+4bx﹣4,則g(x)在R上的圖象是連續(xù)的,當b≥0時,當b<0時,判斷函數(shù)是否有零點,證明對任意實數(shù)b,都有f(x)∈M.
解:(1)當時,方程
此方程無解,所以不存在實數(shù)t,使得,
故不屬于集合M﹒
(2)由,屬于集合M,可得
方程有實解
有實解
有實解,
若時,上述方程有實解;
若時,有
,解得
,
故所求a的取值范圍是.
(3)當時,方程
,
,則
在
上的圖像是連續(xù)的,
當時,
,
,故
在
內(nèi)至少有一個零點
當時,
,
,故
在
內(nèi)至少有一個零點
故對任意的實數(shù)b,在
上都有零點,即方程
總有解,
所以對任意實數(shù)b,都有.
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù)
,滿足
,則稱
為“
類函數(shù)”.
(1)已知函數(shù),試判斷
是否為“
類函數(shù)”?并說明理由;
(2)設(shè)是定義在
上的“
類函數(shù)”,求是實數(shù)
的最小值;
(3)若
為其定義域上的“
類函數(shù)”,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】水庫的蓄水量隨時間而變化,現(xiàn)用t表示時間,以月為單位,年初為起點(用t表示第t月份,),根據(jù)歷年數(shù)據(jù),某水庫的蓄水量V(單位:億立方米)與時間t的近似函數(shù)關(guān)系為:當0<t≤10時,
;當10<t≤12時,
;若2月份該水庫的蓄水量為33.6億立方米.
(1)求實數(shù)a的值;
(2)求一年內(nèi)該水庫的最大蓄水量.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)
在
處的切線方程;
(2)是否存在非負整數(shù),使得函數(shù)
是單調(diào)函數(shù),若存在,求出
的值;若不存在,請說明理由;
(3)已知,若存在
,使得當
時,
的最小值是
,求實數(shù)
的取值范圍.(注:自然對數(shù)的底數(shù)
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù)
,滿足
,則稱
為“
類函數(shù)”.
(1)已知函數(shù),試判斷
是否為“
類函數(shù)”?并說明理由;
(2)設(shè)是定義在
上的“
類函數(shù)”,求是實數(shù)
的最小值;
(3)若
為其定義域上的“
類函數(shù)”,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù).
(1)當時,求函數(shù)
的定義域;
(2)若判斷
的奇偶性;
(3)是否存在實數(shù)使函數(shù)
在[2,3]遞增,并且最大值為1,若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】大衍數(shù)列,來源于《乾坤譜》中對易傳“大衍之數(shù)五十“的推論.主要用于解釋中國傳統(tǒng)文化中的太極衍生原理數(shù)列中的每一項,都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和是中華傳統(tǒng)文化中隱藏著的世界數(shù)學史上第一道數(shù)列題其規(guī)律是:偶數(shù)項是序號平方再除以2,奇數(shù)項是序號平方減1再除以2,其前10項依次是0,2,4,8,12,18,24,32,40,50,…,如圖所示的程序框圖是為了得到大衍數(shù)列的前100項而設(shè)計的,那么在兩個判斷框中,可以先后填入( )
A. 是偶數(shù)?,
? B.
是奇數(shù)?,
?
C. 是偶數(shù)?,
? D.
是奇數(shù)?,
?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列的前
項和為
,對任意
,點
都在函數(shù)
的圖象上.
(1)求,歸納數(shù)列
的通項公式(不必證明).
(2)將數(shù)列依次按
項、
項、
項、
項、
項循環(huán)地分為
,
,
,
,各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為
,求
的值.
(3)設(shè)為數(shù)列
的前
項積,若不等式
對一切
都成立,其中
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè),函數(shù)
.
(1)若,求
的反函數(shù)
;
(2)求函數(shù)的最大值(用
表示);
(3)設(shè),若對任意
,
恒成立,求
的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com