【題目】如圖,四棱錐的底面是矩形,,點的中點,交于點.

(Ⅰ)求異面直線所成角的余弦值;

(Ⅱ)求證:

(Ⅲ)求直線與平面所成角的正弦值.

【答案】(Ⅰ)(Ⅱ)見證明;(Ⅲ)

【解析】

I)根據(jù)判斷出是異面直線成角,判斷三角形是直角三角形后,直接計算出線線角的余弦值.(II)先證得,然后證得,由此證得平面,從而證得平面平面.III)過點的延長線交于點,證得直線與平面所成角,在中,求得線面角的正弦值.

解:(Ⅰ)∵是矩形,∴是異面直線成角

中, ∴在中,

∴異面直線成角余弦值為.

(Ⅱ)∵,點的中點∴,又∵

又∵,∴

又∵

(Ⅲ)過點的延長線交于點,

為斜線在面內(nèi)的射影

直線與平面所成角

中,

∴直線與平面所成角的正弦值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨立的從四所高校中選2所.

(1)求甲、乙、丙三名同學(xué)都選高校的概率;

(2)若甲必選,記為甲、乙、丙三名同學(xué)中選校的人數(shù),求隨機變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為增強市民的環(huán)境保護意識,某市面向全市學(xué)校征召100名教師做義務(wù)宣傳志愿者,成立環(huán)境保護宣傳組,現(xiàn)把該組的成員按年齡分成5組,如下表所示:

組別

年齡

人數(shù)

1

5

2

35

3

20

4

30

5

10

(Ⅰ)若從第3,4,5組中用分層抽樣的方法選出6名志愿者參加某社區(qū)宣傳活動,應(yīng)從第3,4,5組各選出多少名志愿者?

(Ⅱ)在Ⅰ的條件下,宣傳組決定在這6名志愿者中隨機選2名志愿者介紹宣傳經(jīng)驗.

(。┝谐鏊锌赡芙Y(jié)果;

(ⅱ)求第4組至少有1名志愿者被選中的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“微信運動”已經(jīng)成為當下最熱門的健身方式,小李的微信朋友圈內(nèi)也有大量的好友參加了“微信運動”.他隨機的選取了其中30人,記錄了他們某一天走路的步數(shù),將數(shù)據(jù)整理如下:

步數(shù)

人數(shù)

5

13

12

(1)若采用樣本估計總體的方式,試估計小李所有微信好友中每日走路步數(shù)超過5000步的概率;

(2)已知某人一天的走路步數(shù)若超過8000步則他被系統(tǒng)評定為“積極型”,否則評定為“懈怠型”,將這30人按照“積極型”、“懈怠型”分成兩層,進行分層抽樣,從中抽取5人,將這5人中屬于“積極型”的人依次記為,屬于“懈怠型”的人依次記為,現(xiàn)再從這5人中隨機抽取2人接受問卷調(diào)查.設(shè)為事件“抽取的2人來自不同的類型”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中,底面是邊長為4的等邊三角形,側(cè)棱垂直于底面,,M是棱AC的中點.

(1)求證:平面;

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙、丙、丁、戊五名志愿者中選派三人分別從事翻譯、導(dǎo)游、禮儀三項不同工作,若其中乙和丙只能從事前兩項工作,其余三人均能從事這三項工作,則不同的選派方案共有( )

A.36B.12C.18D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人設(shè)計一項單人游戲,規(guī)則如下:先將一棋子放在如圖所示正方形(邊長為3個單位)的頂點處,然后通過擲骰子來確定棋子沿正方形的邊按逆時針方向行走的單位,如果擲出的點數(shù)為,則棋子就按逆時針方向行走個單位,一直循環(huán)下去.則某人拋擲三次次骰子后棋子恰好又回到點處的所有不同走法共有(

A.21B.24C.25D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某地區(qū)隨機抽測120名成年女子的血清總蛋白含量(單位:),由測量結(jié)果得如圖頻數(shù)分布表:

1)①仔細觀察表中數(shù)據(jù),算出該樣本平均數(shù)______

②由表格可以認為,該地區(qū)成年女子的血清總蛋白含量Z服從正態(tài)分布.其中近似為樣本平均數(shù),近似為樣本標準差s.經(jīng)計算,該樣本標準差.

醫(yī)學(xué)上,Z過高或過低都為異常,Z的正常值范圍通常取關(guān)于對稱的區(qū)間,且Z位于該區(qū)間的概率為,試用該樣本估計該地區(qū)血清總蛋白正常值范圍.

120名成年女人的血清總蛋白含量的頻數(shù)分布表

分組

頻數(shù)f

區(qū)間中點值x

2

65

130

8

67

536

12

69

828

15

71

1065

25

73

1825

24

75

1800

16

77

1232

10

79

790

7

81

567

1

83

83

合計

120

8856

2)結(jié)合(1)中的正常值范圍,若該地區(qū)有5名成年女子檢測血清總蛋白含量,測得數(shù)據(jù)分別為83.2,8073,59.5,77,從中隨機抽取2名女子,設(shè)血清總蛋白含量不在正常值范圍的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

附:若,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點在橢圓上.直線過點,且與橢圓 交于,兩點,線段的中點為

(I)求橢圓的方程;

(Ⅱ)點為坐標原點,延長線段與橢圓交于點,四邊形能否為平行四邊形?若能,求出此時直線的方程,若不能,說明理由.

查看答案和解析>>

同步練習(xí)冊答案