精英家教網 > 高中數學 > 題目詳情

【題目】某中學的甲、乙、丙三名同學參加高校自主招生考試,每位同學彼此獨立的從四所高校中選2所.

(1)求甲、乙、丙三名同學都選高校的概率;

(2)若甲必選,記為甲、乙、丙三名同學中選校的人數,求隨機變量的分布列及數學期望.

【答案】(1);(2).

【解析】

1)利用組合知識,由古典概型概率公式可得結果;(2)求出甲同學選中高校的概率與乙、丙同學選中高校的概率,判斷所有可能的取值為0,1,2,3,根據互斥事件的概率公式與獨立事件概率公式求出各隨機變量對應的概率,從而可得分布列,進而利用期望公式可得的數學期望.

(1)設“甲、乙、丙三名同學都選高!睘槭录,則

.

(2)甲同學選中高校的概率為:,

乙、丙同學選中高校的概率為:,

所有可能的取值為0,1,2,3,

,有;

;

的分布列為

0

1

2

3

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】學校藝術節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,不等式恒成立.

(1)求函數的極值和函數的圖象在點處的切線方程;

(2)求實數的取值的集合;

(3)設,函數,,其中為自然對數的底數,若關于的不等式至少有一個解,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,直線的參數方程為t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,直線與曲線C交于兩點.

1)求直線的普通方程和曲線C的直角坐標方程;

2)求

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是等差數列,滿足, ,數列滿足, ,且是等比數列.

1)求數列的通項公式;

2)求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)有兩個分廠生產某種零件,按規(guī)定內徑尺寸(單位:mm)的值落在[29.94,30.06)的零件為優(yōu)質品.從兩個分廠生產的零件中各抽出了500件,量其內徑尺寸,得結果如下表:

甲廠:

分組

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.98,30.02)

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

頻數

12

63

86

182

92

61

4

乙廠:

分組

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.98,30.02)

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

頻數

29

71

85

159

76

62

18

(1)試分別估計兩個分廠生產的零件的優(yōu)質品率;

(2)由以上統(tǒng)計數據填下面列聯(lián)表,并問是否有的把握認為“兩個分廠生產的零件的質量有差異”.

甲 廠

乙 廠

合計

優(yōu)質品

非優(yōu)質品

合計

附:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知多面體ABCA1B1C1,A1AB1B,C1C均垂直于平面ABC,ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.

Ⅰ)證明:AB1⊥平面A1B1C1;

求直線AC1與平面ABB1所成的角的正弦值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)求函數 的最大值;

(2) ,且 ,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】光伏發(fā)電是利用太陽能電池及相關設備將太陽光能直接轉化為電能,近幾年在國內出臺的光伏發(fā)電補貼政策的引導下,某地光伏發(fā)電裝機量急劇上漲,如下表:

年份

2011

2012

2013

2014

2015

2016

2017

2018

年份代碼

1

2

3

4

5

6

7

8

新增光伏裝機量兆瓦

0.4

0.8

1.6

3.1

6.1

7.1

9.7

12.2

某位同學分別用兩種模型:①,進行擬合,得到相應的回歸方程并進行殘差分析,殘差圖如下(注:殘差等于

經過計算得,,,其中,.

1)根據殘差圖,比較模型①,②的擬合效果,應該選擇哪個模型?并簡要說明理由.

2)根據(1)的判斷結果及表中數據建立關于的回歸方程,并預測該地區(qū)2020年新增光伏裝機量是多少.(在計算回歸系數時精確到0.01

附:歸直線的斜率和截距的最小二乘估計公式分別為:,.

查看答案和解析>>

同步練習冊答案