14.如圖是某產(chǎn)品加工為成品的流程圖,從圖中可以看出,若是一件不合格產(chǎn)品,則必須至少經(jīng)過的工序數(shù)目為( 。
A.6道B.5 道C.4道D.3道

分析 利用流程圖的作用求解.

解答 解:由某產(chǎn)品加工為成品的流程圖看出,
即使是一件不合格產(chǎn)品,
零件到達(dá)后也必須經(jīng)過粗加工、檢驗(yàn)、返修加工、返修檢驗(yàn)、定為廢品五道程序.
故選:B.

點(diǎn)評 本題考查流程圖的應(yīng)用,解題時(shí)要認(rèn)真審題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)y=f(x)在x=x0處取得極小值,則必有( 。
A.f′(x0)=0B.f″(x0)>0
C.f′(x0)=0且f″(x0)>0D.f′(x0)=0或f′(x0)不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列說法中正確的是( 。
A.一個(gè)命題的逆命題為真,則它的逆否命題一定為真
B.若“ac2>bc2”,則a>b
C.?x0∈R,$sin{x_0}+cos{x_0}=\frac{3}{2}$
D.“a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)函數(shù)f(x)是定義在(-∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f'(x),且有2f(x)+xf'(x)>x2,則不等式(x+2017)2f(x+2017)-f(-1)<0的解集為(-2018,-2017).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知${({\frac{2}{x}+\sqrt{x}})^n}$的展開式中只有第四項(xiàng)的二項(xiàng)式系數(shù)最大,則展開式中的常數(shù)項(xiàng)等于( 。
A.15B.30C.45D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知a>b>c且$\frac{2}{a-b}+\frac{1}{b-c}≥\frac{m}{a-c}$恒成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若a>0,b>0,則稱$\frac{2ab}{a+b}$為a,b的調(diào)和平均數(shù).如圖,點(diǎn)C為線段AB上的點(diǎn),且AC=a,BC=b,點(diǎn)O為線段AB中點(diǎn),以AB為直徑做半圓,過點(diǎn)C作AB的垂線交半圓于D,連結(jié)OD,AD,BD.過點(diǎn)C作OD的垂線,垂足為E,則圖中線段OD的長度是a,b的算術(shù)平均數(shù),那么圖中表示a,b的幾何平均數(shù)與調(diào)和平均數(shù)的線段,以及由此得到的不等關(guān)系分別是(  )
A.$CD,CE,\frac{2ab}{a+b}≥\sqrt{ab}$B.$CD,DE,\frac{2ab}{a+b}≤\sqrt{ab}$C.$CD,CE,\frac{2ab}{a+b}≥\sqrt{ab}$D.$CD,CE,\frac{2ab}{a+b}≤\sqrt{ab}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列說法正確的是( 。
A.命題“若x2=9,則x=±3”的否命題為“若x2=9,則x≠±3”
B.若命題P:?x0∈R,$x_0^2-3{x_0}-1>0$,則命題?P:?x∈R,$x_{\;}^2-3x-1<0$
C.設(shè)$\overrightarrow a,\overrightarrow b$是兩個(gè)非零向量,則“$\overrightarrow a•\overrightarrow b<0$是“$\overrightarrow a,\overrightarrow b$夾角為鈍角”的必要不充分條件
D.若命題P:$\frac{1}{x-2}>0$,則¬P:$\frac{1}{x-2}≤0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知x,y滿足$\left\{\begin{array}{l}{2x-y≤0}\\{3x+y-3≤0}\\{x≥0}\end{array}\right.$,則z=y-3x的最小值為$-\frac{3}{5}$.

查看答案和解析>>

同步練習(xí)冊答案