在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,已知a2-b2=bc,2sinB-sinC=0,求角A的大。
考點:余弦定理,正弦定理
專題:解三角形
分析:由條件利用正弦定理求得c=2b,再由余弦定理以及a2-b2=bc,求得cosA的值,從而求得A的值.
解答: 解:在△ABC中,∵2sinB-sinC=0,∴2b-c=0,即c=2b.
由cosA=
b2+c2-a2
2bc
,a2-b2=bc,可得cosA=
c2-bc
2bc
=
4b2-2b2
4b2
=
1
2
,
∴A=60°.
點評:本題主要考查正弦定理、余弦定理的應用,根據(jù)三角函數(shù)的值求角,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列敘述正確的個數(shù)為( 。
(1)殘差的平方和越小,即模型的擬合效果越好
(2)R2 越大,即模型的擬合效果越好
(3)回歸直線過樣本點的中心.
A、0B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知橢圓
x2
4
+y2=1的左、右焦點分別為F′與F,圓F:(x-
3
)2
+y2=5.
(1)設M為圓F上一點,滿足
MF′
MF
=1,求點M的坐標;
(2)若P為橢圓上任意一點,以P為圓心,OP為半徑的圓P與圓F的公共弦為QT,證明:點F到直線QT的距離FH為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,AB是圓臺上底面⊙O的直徑,C是⊙O上不同于A、B的一點,D是圓臺下底面⊙O′上的一點,過A、B、C、D的截面垂直與底面,M是CD的中點,又AC=AD=2,∠CAD=120°,∠BCD=30°.
(1)求證AM⊥平面BCD;
(2)求二面角A-DB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設P是圓x2+y2=2上的動點,點D是P在x軸上的投影,M為PD上一點,且|PD|=
2
|MD|,當P在圓上運動時,記點M的軌跡為曲線C.
(Ⅰ)求證:曲線C是焦點在x軸上的橢圓,并求其方程;
(Ⅱ)設橢圓C的右焦點為F2,直線l:y=kx+m與橢圓C交于A、B兩點,直線F2A與F2B的傾斜角互補,求證:直線l過定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
|x-1|+|x+1|-a

(Ⅰ)當a=3時,求函數(shù)f(x)的定義域;
(Ⅱ)若函數(shù)f(x)的定義域為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓Γ:
x2
2
+y2=1點B的坐標為(0,-1),過點B的直線交橢圓Γ于另一點A,且AB中點E在直線y=x上,點P為橢圓Γ上異于A,B的任意一點.
(1)求直線AB的方程,;
(2)設A不為橢圓頂點,又直線AP,BP分別交直線y=x于M,N兩點,證明:
OM
ON
為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
m
=(sinωx+cosωx,
3
cosωx),
n
=(cosωx-sinωx,2sinωx)(ω>0).若f(x)=
m
n
,且f(x)相鄰兩對稱軸間的距離不小于
π
2

(1)求ω的取值范圍;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,a=
3
,b+c=3(b>c),當ω取最大時,f(A)=1,求邊b,c的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={1,2,3,…,100},A是集合M的非空子集,把集合A中的各元素之和記作S(A).
①滿足S(A)=8的集合A的個數(shù)為
 

②S(A)的所有不同取值的個數(shù)為
 

查看答案和解析>>

同步練習冊答案