計算:log3
27
+lg25+lg4+7log72-(
8
27
)-
1
3
=
 
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對數(shù)和指數(shù)的運算性質(zhì)即可得出.
解答: 解:原式=log33
3
2
+lg(25×4)+2-[(
2
3
)3]-
1
3

=
3
2
+2+2-
3
2

=4.
故答案為:4.
點評:本題考查了對數(shù)和指數(shù)的運算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn=-n2+2kn(k∈N+),且Sn的最大值為4.
(1)求數(shù)列{an}的通項an;
(2)令bn=
5-an
2n
,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=logax+b(a>0,a≠1),x∈[1,9]的圖象經(jīng)過點(3,2),且它的反函數(shù)圖象經(jīng)過點(3,9).
(1)求a,b的值;
(2)設(shè)g(x)=f2(x)+f(x2),求值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(x,y)(x,y∈R)為平面上點M的坐標(biāo).
(1)設(shè)集合P={-4,-3,-2,0},Q={0,1,2},從集合P中隨機取一個數(shù)作為x,從集合Q中隨機取一個數(shù)作為y,求點M在y軸上的概率;
(2)設(shè)x∈[0,3],y∈[0,4],求點M落在不等式組:
x+2y-3≤0
x≥0
y≥0
所表示的平面區(qū)域內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
x+1
2-x
<0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:[(-4)3] 
1
3
+log525=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex(sinx-cosx),若0≤x≤4π,則函數(shù)f(x)的各極大值之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,點A的極坐標(biāo)為(
3
,0),點P是曲線ρ=2sinθ上與點A距離最大的點,則P的極坐標(biāo)為
 
(其中ρ≥0,θ∈[0,2π))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=1,|
b
|=2,
a
b
,則|
a
+
b
|=
 

查看答案和解析>>

同步練習(xí)冊答案