直線y=x被曲線2x2+y2=2截得的弦長(zhǎng)為
 
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:把y=x代入2x2+y2=2,求出交點(diǎn)坐標(biāo),即可求得直線y=x被曲線2x2+y2=2截得的弦長(zhǎng).
解答: 解:把y=x代入2x2+y2=2,
可得3x2=2,解得x=±
6
3

所以交點(diǎn)坐標(biāo)為(
6
3
,
6
3
)、(-
6
3
,-
6
3
),
所以直線y=x被曲線2x2+y2=2截得的弦長(zhǎng)為
(
2
6
3
)
2
+(
2
6
3
)
2
=
4
3
3

故答案為:
4
3
3
點(diǎn)評(píng):本題主要考查了直線與橢圓的位置關(guān)系,考查了兩點(diǎn)之間的距離的計(jì)算,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=8x,焦點(diǎn)為F,頂點(diǎn)為O,點(diǎn)M在拋物線上移動(dòng),E是OM的中點(diǎn),N是EF的中點(diǎn),求點(diǎn)N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cos(75°+α)=
1
3
,其中α為第三象限角,sin(105°-α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(1,1),
b
=(3,4),
(1)若k
a
+
b
與k
a
-
b
垂直,求k的值;
(2)若|k
a
+2
b
|=10,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
滿足|
a
|=|
b
|=2,
a
b
的夾角為120°,求
(1)|
a
+
b
|及|
a
-
b
|
(2)向量
a
+
b
a
-
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)P是拋物線y2=8x上一點(diǎn),焦點(diǎn)是F,點(diǎn)A(3,2),使|PA|+|PF|有最小值時(shí),則點(diǎn)P的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=-
4+
1
x2
,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)Pn(an,-
1
an+1
)在曲線y=f(x)上(n∈N*)且a1=1,an>0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)試找整數(shù)M,使M<S31<M+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(2-a)(x-1)-2lnx(a∈R).
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)>0在(0,
1
2
)內(nèi)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)在給定區(qū)間M上存在正數(shù)t,使得對(duì)于任意x∈M,有x+t∈M,且f(x+t)≥f(x),則稱f(x)為M上的t級(jí)類增函數(shù).給出4個(gè)命題
①函數(shù)f(x)=
4
x
+x是(1,+∞)上的3級(jí)類增函數(shù);
②函數(shù)f(x)=|log2(x-1)|是(1,+∞)上的1級(jí)類增函數(shù);
③若函數(shù)f(x)=sinx+ax是[
π
2
,+∞)上的
π
3
級(jí)類增函數(shù),則實(shí)數(shù)a的最小值為2;
④設(shè)f(x)是定義R在上的函數(shù),且滿足:1.對(duì)任意x∈R,恒有f(x)>0;2.對(duì)任意x1,x2∈[0,1],恒有
f(x1)
f(x2)
+
f(1-x1)
f(1-x2)
≤2;3.對(duì)任意x∈R,f(x)=
1
f(x+
1
2
)
,若函數(shù)f(x)是[1,+∞)上的t級(jí)類增函數(shù),則實(shí)數(shù)t的取值范圍為(0,+∞).
以上命題中為真命題的是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案