【題目】甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是,假設(shè)兩人射擊是否擊中目標(biāo)相互沒(méi)有影響,每人每次射擊是否擊中目標(biāo)相互也沒(méi)有影響.

1)求甲、乙兩人各射擊一次均擊中目標(biāo)的概率;

2)若乙在射擊中出現(xiàn)連續(xù)次未擊中目標(biāo)則會(huì)被終止射擊,求乙恰好射擊次后被終止射擊的概率.

【答案】1;(2.

【解析】

1)利用獨(dú)立事件的概率乘法公式可計(jì)算出事件“甲、乙兩人各射擊一次均擊中目標(biāo)”的概率;

2)由題意可知,乙在第、次未擊中目標(biāo),第次擊中目標(biāo),第次可以擊中目標(biāo),也可以未擊中目標(biāo),利用獨(dú)立事件的概率乘法公式可求得所求事件的概率.

1)記“甲、乙在一次射擊中擊中目標(biāo)”的事件分別為、,

由題知,、相互獨(dú)立,

因此,甲、乙兩人各射擊一次均擊中目標(biāo)的概率為:;

2)記“乙恰好射擊次后被終止射擊”事件為

由題意可知,乙在第、次未擊中目標(biāo),第次擊中目標(biāo),第次可以擊中目標(biāo),也可以未擊中目標(biāo),

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示程序框圖,若輸出的值為,在條件框內(nèi)應(yīng)填寫(xiě)( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線與曲線,(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)寫(xiě)出曲線,的極坐標(biāo)方程;

2)在極坐標(biāo)系中,已知,的公共點(diǎn)分別為,,當(dāng)時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn),與短軸的一個(gè)端點(diǎn)構(gòu)成一個(gè)等邊三角形,且直線與圓相切.

1)求橢圓的方程;

2)已知過(guò)橢圓的左頂點(diǎn)的兩條直線分別交橢圓,兩點(diǎn),且,求證:直線過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知長(zhǎng)方形中,,現(xiàn)將長(zhǎng)方形沿對(duì)角線折起,使,得到一個(gè)四面體,如圖所示.

(1)試問(wèn):在折疊的過(guò)程中,異面直線能否垂直?若能垂直,求出相應(yīng)的的值;若不垂直,請(qǐng)說(shuō)明理由;

(2)當(dāng)四面體體積最大時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在貫徹中共中央、國(guó)務(wù)院關(guān)于精準(zhǔn)扶貧政策的過(guò)程中,某單位在某市定點(diǎn)幫扶某村戶(hù)貧困戶(hù).為了做到精準(zhǔn)幫扶,工作組對(duì)這戶(hù)村民的年收入情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶(hù)的貧困指標(biāo).將指標(biāo)按照,,,分成五組,得到如圖所示的頻率分布直方圖.規(guī)定若,則認(rèn)定該戶(hù)為絕對(duì)貧困戶(hù),否則認(rèn)定該戶(hù)為相對(duì)貧困戶(hù);當(dāng)時(shí),認(rèn)定該戶(hù)為亟待幫住戶(hù)”.工作組又對(duì)這戶(hù)家庭的受教育水平進(jìn)行評(píng)測(cè),家庭受教育水平記為良好不好兩種.

1)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為絕對(duì)貧困戶(hù)數(shù)與受教育水平不好有關(guān):

受教育水平良好

受教育水平不好

總計(jì)

絕對(duì)貧困戶(hù)

相對(duì)貧困戶(hù)

總計(jì)

2)上級(jí)部門(mén)為了調(diào)查這個(gè)村的特困戶(hù)分布情況,在貧困指標(biāo)處于的貧困戶(hù)中,隨機(jī)選取兩戶(hù),用表示所選兩戶(hù)中亟待幫助戶(hù)的戶(hù)數(shù),求的分布列和數(shù)學(xué)期望.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求的普通方程和的直角坐標(biāo)方程;

2)直線軸的交點(diǎn)為,經(jīng)過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),若,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),mR.

1)若m=﹣1,求函數(shù)在區(qū)間[,e]上的最小值;

2)若m0,求函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),.

1)求函數(shù)的極值;

2)對(duì)任意,都有,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案